Classical observations suggest a connection between 3D gene structure and function, but testing this hypothesis has been challenging due to technical limitations. To explore this, we developed epigenetic highly predictive heteromorphic polymer (e-HiP-HoP), a model based on genome organization principles to predict the 3D structure of human chromatin. We defined a new 3D structural unit, a "topos," which represents the regulatory landscape around gene promoters.
View Article and Find Full Text PDFThe gene () has been proposed to be a proto-oncogene due to high RNA transcript levels found in multiple cancers, including myeloma, breast, lung, pancreas and esophageal cancer. The presence of an open reading frame (ORF) in humans and other primates suggests protein-coding potential. Yet, we still lack evidence of a functional MYEOV protein.
View Article and Find Full Text PDFCentromeres are scaffolds for the assembly of kinetochores that ensure chromosome segregation during cell division. How vertebrate centromeres obtain a three-dimensional structure to accomplish their primary function is unclear. Using super-resolution imaging, capture-C, and polymer modeling, we show that vertebrate centromeres are partitioned by condensins into two subdomains during mitosis.
View Article and Find Full Text PDFNat Struct Mol Biol
September 2023
In living cells, the 3D structure of gene loci is dynamic, but this is not revealed by 3C and FISH experiments in fixed samples, leaving a notable gap in our understanding. To overcome these limitations, we applied the highly predictive heteromorphic polymer (HiP-HoP) model to determine chromatin fiber mobility at the Pax6 locus in three mouse cell lines with different transcription states. While transcriptional activity minimally affects movement of 40-kbp regions, we observed that motion of smaller 1-kbp regions depends strongly on local disruption to chromatin fiber structure marked by H3K27 acetylation.
View Article and Find Full Text PDFSurface-attached bacterial biofilms cause disease and industrial biofouling, as well as being widespread in the natural environment. Density-dependent quorum sensing is one of the mechanisms implicated in biofilm initiation. Here we present and analyze a model for quorum-sensing triggered biofilm initiation.
View Article and Find Full Text PDFBiofouling of marine surfaces such as ship hulls is a major industrial problem. Antifouling (AF) paints delay the onset of biofouling by releasing biocidal chemicals. We present a computational model for microbial colonization of a biocide-releasing AF surface.
View Article and Find Full Text PDFGenomic rearrangements are known to result in proto-oncogene deregulation in many cancers, but the link to 3D genome structure remains poorly understood. Here, we used the highly predictive heteromorphic polymer (HiP-HoP) model to predict chromatin conformations at the proto-oncogene in healthy and malignant B cells. After confirming that the model gives good predictions of Hi-C data for the nonmalignant human B cell-derived cell line GM12878, we generated predictions for two cancer cell lines, U266 and Z-138.
View Article and Find Full Text PDFWe perform simulations of a system containing simple model proteins and a polymer representing chromatin. We study the interplay between protein-protein and protein-chromatin interactions, and the resulting condensates that arise due to liquid-liquid phase separation, or a via a "bridging-induced attraction" mechanism. For proteins that interact multivalently, we obtain a phase diagram which includes liquid-like droplets, droplets with absorbed polymer, and coated polymer regimes.
View Article and Find Full Text PDFChromosomal translocations are important drivers of haematological malignancies whereby proto-oncogenes are activated by juxtaposition with enhancers, often called We analyzed the epigenomic consequences of rearrangements between the super-enhancers of the immunoglobulin heavy locus () and proto-oncogene that are common in B cell malignancies. By integrating BLUEPRINT epigenomic data with DNA breakpoint detection, we characterized the normal chromatin landscape of the human locus and its dynamics after pathological genomic rearrangement. We detected an H3K4me3 broad domain (BD) within the locus of healthy B cells that was absent in samples with translocations.
View Article and Find Full Text PDFFitting-free mechanistic models based on polymer simulations predict chromatin folding in 3D by focussing on the underlying biophysical mechanisms. This class of models has been increasingly used in conjunction with experiments to study the spatial organisation of eukaryotic chromosomes. Feedback from experiments to models leads to successive model refinement and has previously led to the discovery of new principles for genome organisation.
View Article and Find Full Text PDFPolymer simulations and predictive mechanistic modelling are increasingly used in conjunction with experiments to study the organization of eukaryotic chromosomes. Here we review some of the most prevalent models for mechanisms which drive different aspects of chromosome organization, as well as a recent simulation scheme which combines several of these mechanisms into a single predictive model. We give some practical details of the modelling approach, as well as review some of the key results obtained by these and similar models in the last few years.
View Article and Find Full Text PDFWe study the effect of transcription on the kinetics of DNA supercoiling in three dimensions by means of Brownian dynamics simulations of a single-nucleotide-resolution coarse-grained model for double-stranded DNA. By explicitly accounting for the action of a transcribing RNA polymerase (RNAP), we characterize the geometry and nonequilibrium dynamics of the ensuing twin supercoiling domains. Contrary to the typical textbook picture, we find that the generation of twist by RNAP results in the formation of plectonemes (writhed DNA) some distance away.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2020
Rapid methods for diagnosis of bacterial infections are urgently needed to reduce inappropriate use of antibiotics, which contributes to antimicrobial resistance. In many rapid diagnostic methods, DNA oligonucleotide probes, attached to a surface, bind to specific nucleotide sequences in the DNA of a target pathogen. Typically, each probe binds to a single target sequence; i.
View Article and Find Full Text PDFLamina-associated domains (LADs) cover a large part of the human genome and are thought to play a major role in shaping the nuclear architectural landscape. Here, we perform polymer simulations, microscopy, and mass spectrometry to dissect the roles played by heterochromatin- and lamina-mediated interactions in nuclear organization. Our model explains the conventional organization of heterochromatin and euchromatin in growing cells and the pathological organization found in oncogene-induced senescence and progeria.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2019
We use molecular dynamics simulations based on publicly available micrococcal nuclease sequencing data for nucleosome positions to predict the 3D structure of chromatin in the yeast genome. Our main aim is to shed light on the mechanism underlying the formation of chromosomal interaction domains, chromosome regions of around 0.5 to 10 kbp which show enriched self-interactions, which were experimentally observed in recent MicroC experiments (importantly these are at a different length scale from the 100- to 1,000-kbp-sized domains observed in higher eukaryotes).
View Article and Find Full Text PDFSummary: Capture-C is a member of the chromosome-conformation-capture family of experimental methods which probes the 3D organization of chromosomes within the cell nucleus. It provides high-resolution information on the genome-wide chromatin interactions from a set of 'target' genomic locations, and is growing in popularity as a tool for improving our understanding of cis-regulation and gene function. Yet, analysis of the data is complicated, and to date there has been no dedicated or easy-to-use software to automate the process.
View Article and Find Full Text PDFWe analyze transcriptional bursting within a stochastic nonequilibrium model, which accounts for the coupling between the dynamics of DNA supercoiling and gene transcription. We find a clear signature of bursty transcription when there is a separation between the timescales of transcription initiation and supercoiling dissipation (the latter may either be diffusive or mediated by topological enzymes, such as type I or type II topoisomerases). In multigenic DNA domains, we observe either bursty transcription or transcription waves; the type of behavior can be selected for by controlling gene activity and orientation.
View Article and Find Full Text PDFChromatin folded into 3D macromolecular structures is often analyzed by chromosome conformation capture (3C) and fluorescence in situ hybridization (FISH) techniques, but these frequently provide contradictory results. Chromatin can be modeled as a simple polymer composed of a connected chain of units. By embedding data for epigenetic marks (H3K27ac), chromatin accessibility (assay for transposase-accessible chromatin using sequencing [ATAC-seq]), and structural anchors (CCCTC-binding factor [CTCF]), we developed a highly predictive heteromorphic polymer (HiP-HoP) model, where the chromatin fiber varied along its length; combined with diffusing protein bridges and loop extrusion, this model predicted the 3D organization of genomic loci at a population and single-cell level.
View Article and Find Full Text PDFProcesses like cellular senescence are characterized by complex events giving rise to heterogeneous cell populations. However, the early molecular events driving this cascade remain elusive. We hypothesized that senescence entry is triggered by an early disruption of the cells' three-dimensional (3D) genome organization.
View Article and Find Full Text PDFFluorescence microscopy reveals that the contents of many (membrane-free) nuclear bodies exchange rapidly with the soluble pool while the underlying structure persists; such observations await a satisfactory biophysical explanation. To shed light on this, we perform large-scale Brownian dynamics simulations of a chromatin fiber interacting with an ensemble of (multivalent) DNA-binding proteins able to switch between an "on" (binding) and an "off" (nonbinding) state. This system provides a model for any DNA-binding protein that can be posttranslationally modified to change its affinity for DNA (e.
View Article and Find Full Text PDFMammalian interphase chromosomes fold into a multitude of loops to fit the confines of cell nuclei, and looping is tightly linked to regulated function. Chromosome conformation capture (3C) technology has significantly advanced our understanding of this structure-to-function relationship. However, all 3C-based methods rely on chemical cross-linking to stabilize spatial interactions.
View Article and Find Full Text PDFBiophysicists are modeling conformations of interphase chromosomes, often basing the strengths of interactions between segments distant on the genetic map on contact frequencies determined experimentally. Here, instead, we develop a fitting-free, minimal model: bivalent or multivalent red and green 'transcription factors' bind to cognate sites in strings of beads ('chromatin') to form molecular bridges stabilizing loops. In the absence of additional explicit forces, molecular dynamic simulations reveal that bound factors spontaneously cluster-red with red, green with green, but rarely red with green-to give structures reminiscent of transcription factories.
View Article and Find Full Text PDFThe three-dimensional (3D) organization of chromosomes can be probed using methods like Capture-C. However, it is unclear how such population-level data relate to the organization within a single cell, and the mechanisms leading to the observed interactions are still largely obscure. We present a polymer modeling scheme based on the assumption that chromosome architecture is maintained by protein bridges, which form chromatin loops.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
December 2015
Deprivation of essential nutrients can have stark consequences for many processes in a cell. We consider amino acid starvation, which can result in bottlenecks in mRNA translation when ribosomes stall due to lack of resources, i.e.
View Article and Find Full Text PDFMolecular dynamics simulations are used to model proteins that diffuse to DNA, bind, and dissociate; in the absence of any explicit interaction between proteins, or between templates, binding spontaneously induces local DNA compaction and protein aggregation. Small bivalent proteins form into rows [as on binding of the bacterial histone-like nucleoid-structuring protein (H-NS)], large proteins into quasi-spherical aggregates (as on nanoparticle binding), and cylinders with eight binding sites (representing octameric nucleosomal cores) into irregularly folded clusters (like those seen in nucleosomal strings). Binding of RNA polymerase II and a transcription factor (NFκB) to the appropriate sites on four human chromosomes generates protein clusters analogous to transcription factories, multiscale loops, and intrachromosomal contacts that mimic those found in vivo.
View Article and Find Full Text PDF