Various studies have demonstrated that directed evolution is a powerful tool in enhancing protein properties. In this study, directed evolution was used to enhance the efficacy of synthesised AtMP1 antimicrobial peptides (AMPs) in inhibiting the proliferation of cancer cells. The modification of antimicrobial peptides (AMPs) and prediction of peptide properties using bioinformatic tools were carried out using four databases, including ADP3, CAMP-R3, AMPfun, and ANTICP.
View Article and Find Full Text PDFPseudocontact shifts (PCSs) generated by paramagnetic lanthanide ions provide valuable long-range structural information in nuclear magnetic resonance (NMR) spectroscopic analyses of biological macromolecules such as proteins, but labelling proteins site-specifically with a single lanthanide ion remains an ongoing challenge, especially for proteins that are not suitable for ligation with cysteine-reactive lanthanide complexes. We show that a specific lanthanide-binding site can be installed on proteins by incorporation of phosphoserine in conjunction with other negatively charged residues, such as aspartate, glutamate or a second phosphoserine residue. The close proximity of the binding sites to the protein backbone leads to good immobilization of the lanthanide ion, as evidenced by the excellent quality of fits between experimental PCSs and PCSs calculated with a single magnetic susceptibility anisotropy ( tensor.
View Article and Find Full Text PDFThe anophelins are small protein thrombin inhibitors that are produced in the salivary glands of the mosquito to fulfill a vital role in blood feeding. A bioinformatic analysis of anophelin sequences revealed the presence of conserved tyrosine residues in an acidic environment that were predicted to be post-translationally sulfated . To test this prediction, insect cell expression of two anophelin proteins, from and , was performed, followed by analysis by mass spectrometry, which showed heterogeneous sulfation at the predicted sites.
View Article and Find Full Text PDFThe amino acids 4-(tert-butyl)phenylalanine (Tbf) and 4-(trimethylsilyl)phenylalanine (TMSf), as well as a partially deuterated version of Tbf (dTbf), were chemically synthesized and site-specifically incorporated into different proteins, using an amber stop codon, suppressor tRNA and the broadband aminoacyl-tRNA synthetase originally evolved for the incorporation of p-cyano-phenylalanine. The H-NMR signals of the tert-butyl and TMS groups were compared to the H-NMR signal of tert-butyltyrosine (Tby) in protein systems with molecular weights ranging from 8 to 54 kDa. The H-NMR resonance of the TMS group appeared near 0 ppm in a spectral region with few protein resonances, facilitating the observation of signal changes in response to ligand binding.
View Article and Find Full Text PDFPseudocontact shifts (PCS) encode long-range information on 3D structures of protein backbones and side-chains. The level of structural detail that can be obtained increases with the number of different sites tagged with a paramagnetic metal ion to generate PCSs. Here we show that PCSs from two different sites can suffice to determine the structure of polypeptide chains and their location and orientation relative to the magnetic susceptibility tensor χ, provided that PCSs are available for H as well as heteronuclear spins.
View Article and Find Full Text PDFParamagnetic metal ions accelerate nuclear spin relaxation; this effect is widely used for distance measurement and called paramagnetic relaxation enhancement (PRE). Theoretical predictions established that, under special circumstances, it is also possible to achieve a reduction in nuclear relaxation rates (negative PRE). This situation would occur if the mechanism of nuclear relaxation in the diamagnetic state is counterbalanced by a paramagnetic relaxation mechanism caused by the metal ion.
View Article and Find Full Text PDFTwo new bifunctional macrocyclic chelate ligands that form luminescent terbium(III) complexes featuring an alkyne group for conjugation to (bio)molecules via the Cu(I)-catalyzed "click" reaction were synthesized. Upon ligation, the complexes exhibit a significant luminescent enhancement when excited at the λ(max) of the "clicked" products. To demonstrate the utility of the complexes for luminescent labeling, they were conjugated in vitro to E.
View Article and Find Full Text PDFPseudocontact shifts (PCS) induced by paramagnetic lanthanide ions provide unique long-range structural information in nuclear magnetic resonance (NMR) spectra, but the site-specific attachment of lanthanide tags to proteins remains a challenge. Here we incorporated p-azido-phenylalanine (AzF) site-specifically into the proteins ubiquitin and GB1, and ligated the AzF residue with alkyne derivatives of small nitrilotriacetic acid and iminodiacetic acid tags using the Cu(I) -catalysed "click" reaction. These tags form lanthanide complexes with no or only a small net charge and produced sizeable PCSs with paramagnetic lanthanide ions in all mutants tested.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2014
Heterodinuclear metalloenzymes are an important class of metalloproteins, but determining the location of the different metal ions can be difficult. Herein we present a new NMR spectroscopy method that uses pseudocontact shifts (PCS) to achieve this without assumptions about the coordinating ligands. The approach is illustrated with the dinuclear [FeZn] complex of IMP-1, which is a prototypical metallo-β-lactamase (MβL) that confers resistance to β-lactam antibiotics.
View Article and Find Full Text PDFMethods Mol Biol
September 2014
Cell-free protein synthesis (CFPS) offers a fast and inexpensive means to incorporate unnatural amino acids (UAAs) site specifically into proteins. This enables engineering of proteins and allows production of protein-based probes for analysis of their interactions with other molecules. Using dialysis Escherichia coli CFPS system in combination with aminoacyl-tRNA synthetase and suppressor tRNA evolved from Methanocaldococcus jannaschii high expression yield of proteins with site specifically incorporated UAAs can be achieved.
View Article and Find Full Text PDFPseudocontact shifts (PCS) from paramagnetic lanthanide ions present powerful long-range structural restraints for structural biology by NMR spectroscopy, but site-specific tagging of proteins with lanthanides remains a challenge, as most of the available lanthanide tags require proteins with single cysteine residues. We show that cyclen-based paramagnetic lanthanide tags can be attached to proteins in a site-specific manner by Cu(I)-catalyzed azide-alkyne cycloaddition to a genetically encoded p-azido-l-phenylalanine residue with a tether that proved sufficiently short and rigid for the observation of PCSs in several proteins. Despite the sterically demanding conditions associated with bulky tags and reactions close to the protein surface, ligation yields consistently above 50% and approaching 100% were obtained with the help of the Cu(I)-stabilizing ligand BTTAA.
View Article and Find Full Text PDFStructural studies of proteins and protein-ligand complexes by nuclear magnetic resonance (NMR) spectroscopy can be greatly enhanced by site-specific attachment of lanthanide ions to create paramagnetic centers. In particular, pseudocontact shifts (PCS) generated by paramagnetic lanthanides contain important and unique long-range structure information. Here, we present a high-affinity lanthanide binding tag that can be attached to single cysteine residues of proteins.
View Article and Find Full Text PDFSelectively isotope labelled protein samples can be prepared in vivo or in vitro from selectively labelled amino acids but, in many cases, metabolic conversions between different amino acids result in isotope scrambling. The best results are obtained by cell-free protein synthesis, where metabolic enzymes are generally less active, but isotope scrambling can never be suppressed completely. We show that reduction of E.
View Article and Find Full Text PDF