Publications by authors named "Chouxian Ma"

While the ruminant gut archaeome regulates the gut microbiota and hydrogen balance, it is also a major producer of the greenhouse gas methane. However, ruminant gut archaeome diversity within the gastrointestinal tract (GIT) of ruminant animals worldwide remains largely underexplored. Here, we construct a catalogue of 998 unique archaeal genomes recovered from the GITs of ruminants, utilizing 2270 metagenomic samples across 10 different ruminant species.

View Article and Find Full Text PDF

The pig gut virome plays a vital role in the gut microbial ecosystem of pigs. However, a comprehensive understanding of their diversity and a reference database for the virome are currently lacking. To address this gap, we established a Pig Virome Database (PVD) that comprised of 5,566,804 viral contig sequences from 4650 publicly available gut metagenomic samples using a pipeline designated "metav".

View Article and Find Full Text PDF

Polymerase chain reaction (PCR) variants requiring specific primer types are widely used in various PCR experiments, including generic PCR, inverse PCR, anchored PCR, and ARMS PCR. Few tools can be adapted for multiple PCR variants, and many tools select primers by filtration based on the given parameters, which result in frequent design failures. Here we introduce PrimerScore2, a robust high-throughput primer design tool that can design primers in one click for multiple PCR variants.

View Article and Find Full Text PDF

The precisionFDA Truth Challenge V2 aimed to assess the state of the art of variant calling in challenging genomic regions. Starting with FASTQs, 20 challenge participants applied their variant-calling pipelines and submitted 64 variant call sets for one or more sequencing technologies (Illumina, PacBio HiFi, and Oxford Nanopore Technologies). Submissions were evaluated following best practices for benchmarking small variants with updated Genome in a Bottle benchmark sets and genome stratifications.

View Article and Find Full Text PDF

Noninvasive prenatal testing of common aneuploidies has become routine over the past decade, but testing of monogenic disorders remains a challenge in clinical implementation. Most recent studies have inherent limitations, such as complicated procedures, a lack of versatility, and the need for prior knowledge of parental genotypes or haplotypes. To overcome these limitations, a robust and versatile next-generation sequencing-based cell-free DNA (cfDNA) allelic molecule counting system termed cfDNA barcode-enabled single-molecule test (cfBEST) is developed for the noninvasive prenatal diagnosis (NIPD) of monogenic disorders.

View Article and Find Full Text PDF

Linkage maps enable the study of important biological questions. The construction of high-density linkage maps appears more feasible since the advent of next-generation sequencing (NGS), which eases SNP discovery and high-throughput genotyping of large population. However, the marker number explosion and genotyping errors from NGS data challenge the computational efficiency and linkage map quality of linkage study methods.

View Article and Find Full Text PDF

Background: The genetics and molecular biology of sesame has only recently begun to be studied even though sesame is an important oil seed crop. A high-density genetic map for sesame has not been published yet due to a lack of sufficient molecular markers. Specific length amplified fragment sequencing (SLAF-seq) is a recently developed high-resolution strategy for large-scale de novo SNP discovery and genotyping.

View Article and Find Full Text PDF

Large-scale genotyping plays an important role in genetic association studies. It has provided new opportunities for gene discovery, especially when combined with high-throughput sequencing technologies. Here, we report an efficient solution for large-scale genotyping.

View Article and Find Full Text PDF