Publications by authors named "Choung U Kim"

A series of 2'-fluorinated C-nucleosides were prepared and tested for anti-HCV activity. Among them, the triphosphate of 2'-fluoro-2'-C-methyl adenosine C-nucleoside (15) was a potent and selective inhibitor of the NS5B polymerase and maintained activity against the S282T resistance mutant. A number of phosphoramidate prodrugs were then prepared and evaluated leading to the identification of the 1-aminocyclobutane-1-carboxylic acid isopropyl ester variant (53) with favorable pharmacokinetic properties including efficient liver delivery in animals.

View Article and Find Full Text PDF

Background: GS-9256 is an inhibitor of HCV NS3 protease with a macrocyclic structure and novel phosphinic acid pharmacophore.

Methods: Key preclinical properties of GS-9256 including in vitro antiviral activity, cross-resistance and pharmacokinetic properties were investigated in non-human species.

Results: In genotype (GT) 1b Huh-luc cells with a replicon encoding luciferase, GS-9256 had a mean 50% effective concentration (EC) value of 20.

View Article and Find Full Text PDF

Ribose modified 1'-C-cyano pyrimidine nucleosides were synthesized. A silver triflate mediated Vorbrüggen reaction was used to generate the nucleoside scaffold and follow-up chemistry provided specific ribose modified analogs. Nucleosides and phosphoramidate prodrugs were tested for their anti-HCV activity.

View Article and Find Full Text PDF

The first synthesis of 1'-C-CN, 2'-F, 2'-C-Me pyrimidines is described. Anti-HCV activity was assessed and compared to the 1'-C-CN, 2'-C-Me as well as the 2'-F, 2'-C-Me pyrimidines. A phosphoramidate prodrug of the cytidine derivative showed activity in the low micromolar range against HCV replicons.

View Article and Find Full Text PDF

The first synthesis of 1'-cyano-2'-C-methyl pyrimidine nucleosides is described. Anti-HCV activity of these nucleosides and their nucleotide phosphoramidate prodrugs was assessed and compared to the 1'-unsubstituted counterparts and to the related 1'-cyano-2'-C-methyl C-nucleoside parent of GS-6620.

View Article and Find Full Text PDF

As a class, nucleotide inhibitors (NIs) of the hepatitis C virus (HCV) nonstructural protein 5B (NS5B) RNA-dependent RNA polymerase offer advantages over other direct-acting antivirals, including properties, such as pangenotype activity, a high barrier to resistance, and reduced potential for drug-drug interactions. We studied the in vitro pharmacology of a novel C-nucleoside adenosine analog monophosphate prodrug, GS-6620. It was found to be a potent and selective HCV inhibitor against HCV replicons of genotypes 1 to 6 and against an infectious genotype 2a virus (50% effective concentration [EC50], 0.

View Article and Find Full Text PDF

The anti-hepatitis C virus nucleotide prodrug GS-6620 employs a double-prodrug approach, with l-alanine-isopropyl ester and phenol moieties attached to the 5'-phosphate that release the nucleoside monophosphate in hepatocytes and a 3'-isobutyryl ester added to improve permeability and oral bioavailability. Consistent with the stability found in intestinal homogenates, following oral administration, intact prodrug levels in blood plasma were the highest in dogs, followed by monkeys, and then were the lowest in hamsters. In contrast, liver levels of the triphosphate metabolite at the equivalent surface area-adjusted doses were highest in hamsters, followed by in dogs and monkeys.

View Article and Find Full Text PDF

A sulfonamide replacement of the P2-P3 amide bond in the context of macrocyclic HCV NS3 protease inhibitors was investigated. These analogs displayed good inhibitory potency in the absence of any P3 capping group. The synthesis and preliminary SAR are described.

View Article and Find Full Text PDF

GS-9451 is a selective hepatitis C virus (HCV) NS3 protease inhibitor in development for the treatment of genotype 1 (GT1) HCV infection. Key preclinical properties of GS-9451, including in vitro antiviral activity, selectivity, cross-resistance, and combination activity, as well as pharmacokinetic properties, were determined. In multiple GT1a and GT1b replicon cell lines, GS-9451 had mean 50% effective concentrations (EC50s) of 13 and 5.

View Article and Find Full Text PDF

Hepatitis C virus (HCV) infection presents an unmet medical need requiring more effective treatment options. Nucleoside inhibitors (NI) of HCV polymerase (NS5B) have demonstrated pan-genotypic activity and durable antiviral response in the clinic, and they are likely to become a key component of future treatment regimens. NI candidates that have entered clinical development thus far have all been N-nucleoside derivatives.

View Article and Find Full Text PDF

A series of 2'-C-methyl branched purine and pyrimidine C-nucleosides were prepared. Their anti-HCV activity and pharmacological properties were profiled, and compared with known 2'-C-Me N-nucleoside counterparts. In particular, 2'-C-Me 4-aza-7,9-dideazaadenosine C-nucleoside (2) was found to have potent and selective anti-HCV activity in vitro as well as a favorable pharmacokinetic profile and in vivo potential for enhanced potency over the corresponding N-nucleoside.

View Article and Find Full Text PDF

A series of 1'-substituted analogs of 4-aza-7,9-dideazaadenosine C-nucleoside were prepared and evaluated for the potential as antiviral agents. These compounds showed a broad range of inhibitory activity against various RNA viruses. In particular, the whole cell potency against HCV when R=CN was attributed to inhibition of HCV NS5B polymerase and intracellular concentration of the corresponding nucleoside triphosphate.

View Article and Find Full Text PDF

The discovery of GS-9451 is reported. Modification of the P3 cap and P2 quinoline with a series of solubilizing groups led to the identification of potent HCV NS3 protease inhibitors with greatly improved pharmacokinetic properties in rats, dogs and monkeys.

View Article and Find Full Text PDF

A potent and novel class of phosphinic acid derived product-like inhibitors of the HCV NS3/4A protease was discovered previously. Modification of the phosphinic acid and quinoline heterocycle led to GS-9256 with potent cell-based activity and favorable pharmacokinetic parameters. Based on these attributes, GS-9256 was advanced to human clinical trial as a treatment for chronic infection with genotype 1 HCV.

View Article and Find Full Text PDF

A novel, potent, and orally bioavailable class of product-like inhibitors of the HCV NS3 protease was discovered by constraining the P2-P3 amide bond and the P3 hydrocarbon substituent to the protease-bound conformation. This preorganization was accomplished by incorporation of the P2-P3 amide into a six-membered ring attached to the P2-proline 5-position. Isothermal calorimetric characterization of the role of hydrocarbon substitution of this six-membered ring, upon binding the HCV NS3 protease, was found to be exclusively entropic in nature.

View Article and Find Full Text PDF
Article Synopsis
  • A new class of inhibitors targeting the HCV NS3 protease was developed using phosphinic acid as a model compound.
  • Researchers enhanced the effectiveness and absorption profile of these inhibitors by modifying the phosphinic acid structure and using macrocyclization techniques.
  • The study details the synthesis process and initial biological testing of these promising phosphinic acid compounds.
View Article and Find Full Text PDF

There is an urgent need for the development of novel antimicrobial agents that offer effective treatment against MRSA. Using a new class of dipeptide antibiotic TAN-1057A/B as lead, we designed, synthesized and evaluated analogs of TAN-1057A/B. Several novel dihydropyrimidinone antibiotics demonstrating comparable antibiotic efficacy while possessing favorable selectivity were identified.

View Article and Find Full Text PDF

A series of N1-alkyl pyrimidinediones were designed, synthesized and evaluated as HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs). Our efforts identified compound 10b, which represents the lead compound in this series with pharmacokinetics and antiviral potency that may support once-daily dosing.

View Article and Find Full Text PDF

A series of N1-heterocyclic pyrimidinediones were extensively evaluated as HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs). Inhibitor 1 is active against NNRTI-resistant viruses including RT mutant K103N. The co-crystal structure of inhibitor 1 with HIV-1 RT revealed that H-bonds are formed with K101 and K103.

View Article and Find Full Text PDF

A novel class of phosphonate derivatives was designed to mimic the interaction of product-like carboxylate based inhibitors of HCV NS3 protease. A phosphonic acid (compound 2) was demonstrated to be a potent HCV NS3 protease inhibitor, and a potential candidate for treating HCV infection. The syntheses and preliminary biological evaluation of this phosphonate class of inhibitor are described.

View Article and Find Full Text PDF

SAR studies on the para-fluorobenzyl moiety of tricyclic HIV integrase inhibitors are discussed and lead compounds with potency and PK properties comparable to raltegravir were identified.

View Article and Find Full Text PDF

A diphosphate of a novel cyclopentyl based nucleoside phosphonate with potent inhibition of HIV reverse transcriptase (RT) (20, IC(50)=0.13 microM) has been discovered. In cell culture the parent phosphonate diacid 9 demonstrated antiviral activity EC(50)=16 microM, within two-fold of GS-9148, a prodrug of which is currently under clinical investigation, and within 5-fold of tenofovir (PMPA).

View Article and Find Full Text PDF

A series of C3 halobenzyl-substituted tricyclic HIV integrase inhibitors was prepared. Improvement in cell-based inhibitor potency was observed in comparison to previously disclosed tricyclic pyrroloquinolines carrying the 'halobenzyl tail' at the lactam nitrogen. Animal PK for several of the C3-substituted inhibitors was examined, with a dihaloaryl analog achieving good balance in protein-shifted EC(50) and t(1/2) in animal PK studies.

View Article and Find Full Text PDF

GS-9160 is a novel and potent inhibitor of human immunodeficiency virus type 1 (HIV-1) integrase (IN) that specifically targets the process of strand transfer. It is an authentic inhibitor of HIV-1 integration, since treatment of infected cells results in an elevation of two-long terminal repeat circles and a decrease of integration junctions. GS-9160 has potent and selective antiviral activity in primary human T lymphocytes producing a 50% effective concentration (EC(50)) of approximately 2 nM, with a selectivity index (50% cytotoxic concentration/EC(50)) of approximately 2,000.

View Article and Find Full Text PDF

A series of C5-aza tricyclic HIV integrase inhibitors was prepared. A highly potent and orally bioavailable compound (compound 9) was identified and selected for development.

View Article and Find Full Text PDF