α-Hydroxynitrosamine metabolites of nitrosamines decompose to a reactive diazohydroxide and an aldehyde. To test the hypothesis that the aldehydes contribute to the harmful effects of nitrosamines, the toxic and mutagenic activities of three model methylating agents were compared in Chinese hamster ovary cells expressing or not expressing human O⁶-alkylguanine DNA alkyltransferase (AGT). N-Nitrosomethylurethane (NMUr), acetoxymethylmethylnitrosamine (AMMN), and 4-(methylnitrosamino)-4-acetoxy-1-(3-pyridyl)-1-butanone (NNK-4-OAc) are all activated by ester hydrolysis to methanediazohydroxide.
View Article and Find Full Text PDFPrevious studies have shown that replicative bacterial and viral DNA polymerases are able to bypass the mutagenic lesions O(6)-methyl and -benzyl (Bz) G. Recombinant human polymerase (pol) delta also copied past these two lesions but was totally blocked by O(6)-[4-oxo-4-(3-pyridyl)butyl] (Pob)G, an important mutagenic lesion formed following metabolic activation of the tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. The human translesion pols iota and kappa produced mainly only 1-base incorporation opposite O(6)-MeG and O(6)-BzG and had very low activity in copying O(6)-PobG.
View Article and Find Full Text PDFThe hepatocarcinogen and toxicant furan requires metabolic activation to elicit its toxic effects. The available experimental evidence indicates that the overall metabolism of furan is initiated via cytochrome P450 catalyzed oxidation to cis-2-butene-1,4-dial. This alpha,beta-unsaturated dialdehyde reacts in vitro with protein and DNA nucleophiles.
View Article and Find Full Text PDFOxidation of deoxyribose in DNA produces a variety of electrophilic residues that are capable of reacting with nucleobases to form adducts such as M(1)dG, the pyrimidopurinone adduct of dG. We now report that deoxyribose oxidation in DNA leads to the formation of oxadiazabicyclo(3.3.
View Article and Find Full Text PDFThe repair protein O(6)-alkylguanine-DNA alkyltransferase (AGT) protects cells from the mutagenic and carcinogenic effects of alkylating agents by removing O(6)-alkylguanine adducts from DNA. Recently, we established that AGT protects against the mutagenic effects of pyridyloxobutylation resulting from the metabolic activation of the tobacco-specific nitrosamines (TSNA) 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and N-nitrosonornicotine by repairing O(6)-[4-oxo-4-(3-pyridyl)butyl]guanine (O(6)-pobG). There have been several epidemiologic studies examining the association between the I143V/K178R AGT genotype and lung cancer risk.
View Article and Find Full Text PDFFuran is a toxic and carcinogenic compound used in industry and commonly found in the environment. The mechanism of furan's carcinogenesis is not well-understood and may involve both genotoxic and nongenotoxic pathways. Furan undergoes oxidation by cytochrome P450 to cis-2-butene-1,4-dial, which is thought to mediate furan's toxic effects.
View Article and Find Full Text PDFThe tobacco-specific nitrosamines 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and N'-nitrosonornicotine (NNN) are potent carcinogens in animal models and likely human carcinogens. Both NNK and NNN can be activated to a pyridyloxobutylating agent. This alkylating agent contributes to the carcinogenic effects of NNK and NNN via the formation of miscoding DNA adducts.
View Article and Find Full Text PDFFuran is a liver carcinogen and toxicant. Furan is oxidized to the reactive dialdehyde, cis-2-butene-1,4-dial, by microsomal enzymes. This reactive metabolite readily reacts with glutathione nonenzymatically to form conjugates.
View Article and Find Full Text PDFFuran is a liver and kidney toxicant and a hepatocarcinogen in rodents. Its reactive metabolite, cis-2-butene-1,4-dial, reacts with nucleosides to form adducts in vitro. The reaction with 2'-deoxyguanosine generates 3-(2'-deoxy-beta-D-erythropentafuranosyl)-3,5,6,7-tetrahydro-6-hydroxy-7-(ethane-2"-al)-9H-imidazo[1,2-alpha]purine-9-one as the major reaction product.
View Article and Find Full Text PDFFuran is an environmental chemical that induces liver toxicity and tumor formation in rodents, leading to its classification as a probable human carcinogen. cis-2-Butene-1,4-dial, the metabolite considered responsible for furan's toxicological effects, is mutagenic in the Ames assay and reacts with 2'-deoxycytidine (dCyd), 2'-deoxyadenosine (dAdo), and 2'-deoxyguanosine (dGuo) to form previously characterized diastereomeric adducts. The initially formed dCyd adducts are stable to rearrangement, while the dAdo and dGuo adducts are unstable and rearrange to form secondary products.
View Article and Find Full Text PDFThe pyridyloxobutylating agents derived from metabolically activated tobacco-specific nitrosamines can covalently modify guanine bases in DNA at the O(6) position. The adduct formed, O(6)-[4-oxo-4-(3-pyridyl)butyl]guanine ([POB]dG), results in mutations that can lead to tumor formation, posing a significant cancer risk to humans exposed to tobacco smoke. A combined NMR-molecular mechanics computational approach was used to determine the solution structure of the [POB]dG adduct within an 11mer duplex sequence d(CCATAT-[POB]G-GCCC).
View Article and Find Full Text PDF