Objectives: Temporomandibular joint (TMJ) osteoarthritis (OA) is an inflammatory disease that involves periarthritis of the TMJ and destruction of cartilage tissue in the mandibular condyle. However, the role of proinflammatory cytokines in the expression levels of matrix metalloproteinase (MMP) remains inconclusive. Thus, in this study, we aimed to investigate the effect of proinflammatory cytokines on the expression of MMPs.
View Article and Find Full Text PDFObjectives: Cellular differentiation is based on the effects of various growth factors. Transforming growth factor (TGF)-β1 plays a pivotal role in inducing osteogenic differentiation of mesenchymal stem cells (MSCs). In this study, we investigated the influence of connective tissue growth factor (CTGF), known to function synergistically with TGF-β1, on osteogenic differentiation in MSCs.
View Article and Find Full Text PDFAssessment of lower limb muscle mass and related functions in older individuals is important because of their essential role in maintaining locomotion and activities of daily living. Therefore, a simple and reliable method for assessing these parameters should be established. The seated step test is easy and safe and can be used to assess lower limb agility; however, its relationship to skeletal muscle mass and function remains unknown.
View Article and Find Full Text PDFObjectives: Temporomandibular joint osteoarthritis (TMJ-OA) is a multifactorial disease caused by inflammation and oxidative stress. It has been hypothesized that mechanical stress-induced injury of TMJ tissues induces the generation of reactive oxygen species (ROS), such as hydroxyl radical (OH∙), in the synovial fluid (SF). In general, the overproduction of ROS contributes to synovial inflammation and dysfunction of the subchondral bone in OA.
View Article and Find Full Text PDFBackground: Temporomandibular joint osteoarthritis (TMJ-OA) causes cartilage degeneration, bone cavitation, and fibrosis of the TMJ. However, the mechanisms underlying the fibroblast-like synoviocyte (FLS)-mediated inflammatory activity in TMJ-OA remain unclear.
Methods And Results: Reverse transcription-quantitative polymerase chain reaction analysis revealed that the P2Y, P2Y, and P2Y purinergic receptor agonist adenosine 5'-diphosphate (ADP) significantly induces monocyte chemotactic protein 1 (MCP-1)/ C-C motif chemokine ligand 2 (CCL2) expression in the FLS1 synovial cell line.
We investigated the quadriceps muscle size and quantitative characteristics in older tennis players. Thirty-eight senior tennis players (70.8 ± 5.
View Article and Find Full Text PDFOsteoarthritis (OA)-related fibrosis is a possible cause of temporomandibular joint (TMJ) stiffness. However, the molecular mechanisms underlying the fibrogenic activity in fibroblast-like synoviocytes (FLSs) remain to be clarified. The present study examined the effects of receptor tyrosine kinase (RTK) ligands, such as fibroblast growth factor (FGF)-1 and epidermal growth factor (EGF), on myofibroblastic differentiation of the FLS cell line FLS1, which is derived from the mouse TMJ.
View Article and Find Full Text PDFMechanosensitive (MS) neurons in the periodontal ligament (PDL) pass information to the trigeminal ganglion when excited by mechanical stimulation of the tooth. During occlusal tooth trauma of PDL tissues, MS neurons are injured, resulting in atrophic neurites and eventual degeneration of MS neurons. Nerve growth factor (NGF), a neurotrophic factor, serves important roles in the regeneration of injured sensory neurons.
View Article and Find Full Text PDFMesenchymal stem cells (MSCs) retain the ability to self-renew and differentiate into mesenchymal cells. Therefore, human MSCs are suitable candidates for use in regenerative medicine and cell therapies. Upon activation by tissue damage, MSCs contribute to tissue repair through a multitude of processes such as self-renewal, migration, and differentiation.
View Article and Find Full Text PDFMany inflammatory cells are known to be home to inflamed temporomandibular joint (TMJ) tissues by stimulation with cytokines and chemokines produced by inflammatory lesions in the TMJ. However, how the inflammatory cells affect the progression of inflammation in TMJ synovial tissues after their homing to inflamed TMJ site is still uncertain. Here, we isolated and cultured TMJ synoviocyte-like cells (TMJSCs) from murine TMJ tissues.
View Article and Find Full Text PDFSurface pre-reacted glass‑ionomer (S‑PRG)-containing dental materials, including composite and coating resins have been used for the restoration and/or prevention of dental cavities. S‑PRG is known to have the ability to release aluminum, boron, fluorine, silicon, and strontium ions. Aluminum ions are known to be inhibitors whereas boron, fluorine, silicon, and strontium ions are known to be promoters of mineralization, via osteoblasts.
View Article and Find Full Text PDFImmunosuppressive/anti-inflammatory macrophage (Mφ), M2-Mφ that expressed the typical M2-Mφs marker, CD206, and anti-inflammatory cytokine, interleukin (IL)-10, is beneficial and expected tool for the cytotherapy against inflammatory diseases. Here, we demonstrated that bone marrow-derived lineage-positive (Lin+) blood cells proliferated and differentiated into M2-Mφs by cooperation with the bone marrow-derived mesenchymal stem cells (MSCs) under hypoxic condition: MSCs not only promoted proliferation of undifferentiated M2-Mφs, pre-M2-Mφs, in the Lin+ fraction via a proliferative effect of the MSCs-secreted macrophage colony-stimulating factor, but also promoted M2-Mφ polarization of the pre-M2-Mφs through cell-to-cell contact with the pre-M2-Mφs. Intriguingly, an inhibitor for intercellular adhesion molecule (ICAM)-1 receptor/lymphocyte function-associated antigen (LFA)-1, Rwj50271, partially suppressed expression of CD206 in the Lin+ blood cells but an inhibitor for VCAM-1 receptor/VLA-4, BIO5192, did not, suggesting that the cell-to-cell adhesion through LFA-1 on pre-M2-Mφs and ICAM-1 on MSCs was supposed to promoted the M2-Mφ polarization.
View Article and Find Full Text PDFRecently, we identified the scrapie responsive gene 1 (SCRG1) secreted from mesenchymal stem cells (MSCs) and its receptor bone marrow stromal cell antigen 1 (BST1) as positive regulators of stem cell qualities such as self‑renewal, migration abilities, and osteogenic differentiation potential. Here, we examined the effect of the paracrine activity of SCRG1 in macrophages. The mouse macrophage‑like cell line Raw264.
View Article and Find Full Text PDFMalocclusion caused by abnormal jaw development or muscle overuse during mastication results in abnormal mechanical stress to the tissues surrounding the temporomandibular joint (TMJ). Excessive mechanical stress against soft and hard tissues around the TMJ is involved in the pathogenesis of inflammatory diseases, including osteoarthritis (OA). OA-related fibrosis is a possible cause of joint stiffness in OA.
View Article and Find Full Text PDFMesenchymal stem cells (MSCs) are involved in anti-inflammatory events and tissue repair; these functions are activated by their migration or homing to inflammatory tissues in response to various chemokines. However, the mechanism by which MSCs interact with other cell types in inflammatory tissue remains unclear. We investigated the role of periodontal ligament fibroblasts (PDL-Fs) in regulating the anti-inflammatory and osteogenic abilities of bone marrow-derived- (BM-) MSCs.
View Article and Find Full Text PDFThe Wilms' tumor 1 gene (WT1) was originally isolated and described as the gene responsible for Wilms' tumor. Although there is growing evidence linking the overexpression of WT1 to tumorigenesis, no reports on ameloblastoma are available at present. The aim of this study was to examine the expression of WT1 in various histological subtypes of ameloblastoma tissue specimens and in human ameloblastoma cell lines.
View Article and Find Full Text PDFBisphosphonates (BPs) are analogues of pyrophosphate that are known to prevent bone resorption by inhibiting osteoclast activity. Nitrogen-containing BPs, such as zoledronic acid (ZA), are widely used in the treatment of osteoporosis and bone metastasis. However, despite having benefits, ZA has been reported to induce BP-related osteonecrosis of the jaw (BRONJ) in cancer patients.
View Article and Find Full Text PDFThe direction of mesenchymal stem cell (MSC) differentiation is regulated by stimulation with various growth factors and cytokines. We recently established MSC lines, [transforming growth factor-β (TGF-β)-responsive SG‑2 cells, bone morphogenetic protein (BMP)-responsive SG‑3 cells, and TGF-β/BMP-non-responsive SG‑5 cells], derived from the bone marrow of green fluorescent protein-transgenic mice. In this study, to compare gene expression profiles in these MSC lines, we used DNA microarray analysis to characterize the specific gene expression profiles observed in the TGF-β-responsive SG‑2 cells.
View Article and Find Full Text PDFCytokines and their intercellular signals regulate the multipotency of mesenchymal stem cells (MSCs). The present study established the MSC lines SG‑2, ‑3, and ‑5 from the bone marrow of green fluorescent protein (GFP)‑transgenic mice. These cell lines clearly expressed mouse MSC markers Sca‑1 and CD44, and SG‑2 and ‑5 cells retained the potential for osteogenic and adipogenic differentiation in the absence of members of the transforming growth factor (TGF)‑β superfamily.
View Article and Find Full Text PDFDental pulp cells (DPCs), including dental pulp (DP) stem cells, play a role in dentine repair under certain conditions caused by bacterial infections associated with caries, tooth fracture and injury. Mesenchymal stem cells (MSCs) have also been shown to be involved in this process of repair. However, the mechanisms through which MSCs are recruited to the DP have not yet been elucidated.
View Article and Find Full Text PDFThe reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) by defined transcription factors has been a well-established technique and will provide an invaluable resource for regenerative medicine. However, the low reprogramming efficiency of human iPSC is still a limitation for clinical application. Here we showed that the reprogramming potential of human dental pulp cells (DPCs) obtained from immature teeth is much higher than those of mature teeth DPCs.
View Article and Find Full Text PDFThe laccase in the pupal cuticle of the silkworm, Bombyx mori, is thought to accumulate as an inactive precursor that can be activated stage-dependently. In this study we isolated an 81-kDa laccase from cuticular extract of B. mori that was prepared by digestion of the pupal cuticles with α-chymotrypsin.
View Article and Find Full Text PDFBackground: The effects of tongue cleaning on reconstruction of bacterial flora in dental plaque and tongue coating itself are obscure. We assessed changes in the amounts of total bacteria as well as Fusobacterium nucleatum in tongue coating and dental plaque specimens obtained with and without tongue cleaning.
Methods: We conducted a randomized examiner-blind crossover study using 30 volunteers (average 23.
Human mesenchymal stem cells (hMSCs) remodel or regenerate various tissues through several mechanisms. Here, we identified the hMSC-secreted protein SCRG1 and its receptor BST1 as a positive regulator of self-renewal, migration, and osteogenic differentiation. SCRG1 and BST1 gene expression decreased during osteogenic differentiation of hMSCs.
View Article and Find Full Text PDF