Cell Commun Signal
October 2023
NF-κB transcription factors are critical regulators of innate and adaptive immunity and major mediators of inflammatory signaling. The NF-κB signaling is dysregulated in a significant number of cancers and drives malignant transformation through maintenance of constitutive pro-survival signaling and downregulation of apoptosis. Overactive NF-κB signaling results in overexpression of pro-inflammatory cytokines, chemokines and/or growth factors leading to accumulation of proliferative signals together with activation of innate and select adaptive immune cells.
View Article and Find Full Text PDFDysregulation of the adaptor protein Abelson interactor 1 (ABI1) is linked to malignant transformation. To interrogate the role of ABI1 in cancer development, we mapped the ABI1 interactome using proximity-dependent labeling (PDL) with biotin followed by mass spectrometry. Using a novel PDL data filtering strategy, considering both peptide spectral matches and peak areas of detected peptides, we identified 212 ABI1 proximal interactors.
View Article and Find Full Text PDFWhile the bone marrow (BM) microenvironment is significantly remodelled in acute myeloid leukaemia (AML), molecular insight into AML-specific alterations in the microenvironment has been historically limited by the analysis of liquid marrow aspirates rather than core biopsies that contain solid-phase BM stroma. We assessed the effect of anthracycline- and cytarabine-based induction chemotherapy on both haematopoietic and non-haematopoietic cells directly in core BM biopsies using RNA-seq and histological analysis. We compared matched human core BM biopsies at diagnosis and 2 weeks after cytarabine- and anthracycline-based induction therapy in responders (<5% blasts present after treatment) and non-responders (≥5% blasts present after treatment).
View Article and Find Full Text PDFFlow cytometry based immunophenotyping provides prime insight into cellular population composition and characteristics, and is widely used in basic and clinical research. Challenges in processing peripheral blood samples in a timely manner necessitate protocol adaptations and utilization of fixatives. Fixation, however, may introduce artifacts to the flow cytometry readout.
View Article and Find Full Text PDFThe development and use of murine myeloid progenitor cell lines that are conditionally immortalized through expression of HoxB8 has provided a valuable tool for studies of neutrophil biology. Recent work has extended the utility of HoxB8-conditional progenitors to the setting via their transplantation into irradiated mice. Here, we describe the isolation of HoxB8-conditional progenitor cell lines that are unique in their ability to engraft in the naïve host in the absence of conditioning of the hematopoietic niche.
View Article and Find Full Text PDFThe diagnosis of parenchymal central nervous system (CNS) invasion and prediction of risk for future CNS recurrence are major challenges in the management of aggressive lymphomas, and accurate biomarkers are needed to supplement clinical risk predictors. For this purpose, we studied the results of a next-generation sequencing (NGS)-based assay that detects tumor-derived DNA for clonotypic immunoglobulin gene rearrangements in the cerebrospinal fluid (CSF) of patients with lymphomas. Used as a diagnostic tool, the NGS-minimal residual disease (NGS-MRD) assay detected clonotypic DNA in 100% of CSF samples from 13 patients with known CNS involvement.
View Article and Find Full Text PDFBackground: Extracellular vesicles (EVs) are heterogeneous lipid bilayer particles secreted by cells. EVs contain proteins, RNA, DNA and other cargo that can have immunomodulatory effects. Cancer-derived EVs have been described as having immunomodulating effects in vivo with immunosuppressive and pro-tumor growth capabilities.
View Article and Find Full Text PDFAlthough the pathogenesis of primary myelofibrosis (PMF) and other myeloproliferative neoplasms (MPNs) is linked to constitutive activation of the JAK-STAT pathway, JAK inhibitors have neither curative nor MPN-stem cell-eradicating potential, indicating that other targetable mechanisms are contributing to the pathophysiology of MPNs. We previously demonstrated that Abelson interactor 1 (Abi-1), a negative regulator of Abelson kinase 1, functions as a tumor suppressor. Here we present data showing that bone marrow-specific deletion of in a novel mouse model leads to development of an MPN-like phenotype resembling human PMF.
View Article and Find Full Text PDFThe introduction of tyrosine kinase inhibitors (TKI) has transformed chronic myeloid leukemia (CML) into a chronic disease with long-term survival exceeding 85%. However, resistance of CML stem cells to TKI may contribute to the 50% relapse rate observed after TKI discontinuation in molecular remission. We previously described a model of resistance to imatinib mesylate (IM), in which K562 cells cultured in high concentrations of imatinib mesylate showed reduced Bcr-Abl1 protein and activity levels while maintaining proliferative potential.
View Article and Find Full Text PDFDespite the success of tyrosine kinase inhibitor (TKI) therapy in chronic myelogenous leukemia (CML), leukemic stem/progenitor cells remain detectable even in the state of deep molecular remission. Mechanisms that allow them to persist despite continued kinase inhibition remain unclear. We have previously shown that prolonged exposure to imatinib mesylate (IM) results in dysregulation of Akt/Erk 1/2 signaling, upregulation of miR-181a, enhanced adhesiveness, and resistance to high IM.
View Article and Find Full Text PDFIntroduction: During studies on chemotherapy-induced apoptosis in lymphoid cells, we noted that aggregation of spectrin occurred early in apoptosis, i.e. before activation of initiator caspase(s) and prior to exposure of phosphatidylserine (PS).
View Article and Find Full Text PDFThe basis for persistence of leukemic stem cells in the bone marrow microenvironment remains poorly understood. We present evidence that signaling cross-talk between α4 integrin and Abelson interactor-1 (Abi-1) is involved in the acquisition of an anchorage-dependent phenotype and drug resistance in Bcr-Abl-positive leukemia cells. Comparison of Abi-1 (ABI-1) and α4 integrin (ITGA4) gene expression in relapsing Bcr-Abl-positive CD34+progenitor cells demonstrated a reduction in Abi-1 and an increase in α4 integrin mRNA in the absence of Bcr-Abl mutations.
View Article and Find Full Text PDFProstate cancer is one of the leading causes of cancer-related deaths in the United States and a leading diagnosed non-skin cancer in American men. Genetic mutations underlying prostate tumorigenesis include alterations of tumor suppressor genes. We tested the tumor suppressor hypothesis for ABI1/hSSH3BP1 by searching for gene mutations in primary prostate tumors from patients, and by analyzing the consequences of prostate-specific disruption of the mouse Abi1/Hssh3bp1 ortholog.
View Article and Find Full Text PDFIt was shown previously that an ankyrin-sensitive, phosphatidylethanolamine/phosphatidylcholine (PE/PC) binding site maps to the N-terminal part of the ankyrin-binding domain of β-spectrin (ankBDn). Here we have identified the amino acid residues within this domain which are responsible for recognizing monolayers and bilayers composed of PE/PC mixtures. In vitro binding studies revealed that a quadruple mutant with substituted hydrophobic residues W1771, L1775, M1778 and W1779 not only failed to effectively bind PE/PC, but its residual PE/PC-binding activity was insensitive to inhibition with ankyrin.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2011
Abl interactor 1 (Abi1) plays a critical function in actin cytoskeleton dynamics through participation in the WAVE2 complex. To gain a better understanding of the specific role of Abi1, we generated a conditional Abi1-KO mouse model and MEFs lacking Abi1 expression. Abi1-KO cells displayed defective regulation of the actin cytoskeleton, and this dysregulation was ascribed to altered activity of the WAVE2 complex.
View Article and Find Full Text PDFFatty acyl-CoA esters are extremely important in cellular homeostasis. They are intermediates in both lipid metabolism and post-translational protein modifications. Among these modification events, protein palmitoylation seems to be unique by its reversibility which allows dynamic regulation of the protein hydrophobicity.
View Article and Find Full Text PDFIt was previously shown that the beta-spectrin ankyrin-binding domain binds lipid domains rich in PE in an ankyrin-dependent manner, and that its N-terminal sequence is crucial in interactions with phospholipids. In this study, the effect of the full-length ankyrin-binding domain of beta-spectrin on natural erythrocyte and HeLa cell membranes was tested. It was found that, when encapsulated in resealed erythrocyte ghosts, the protein representing the full-length ankyrin-binding domain strongly affected the shape and barrier properties of the erythrocyte membrane, and induced partial spectrin release from the membrane, while truncated mutants had no effect.
View Article and Find Full Text PDFThe major component of the cell membrane skeleton, spectrin, is anchored in the cell membrane via interactions with membrane proteins. It has been previously shown that both erythroid and non-erythroid spectrin interact directly with membrane phospholipids (mainly aminophospholipids). One of the binding sites responsible for these interactions is located in the ankyrin-binding domain.
View Article and Find Full Text PDFIt was previously shown that ankyrins play a crucial role in the membrane skeleton arrangement. Purifying ankyrinR obtained from erythrocytes is a time-consuming process. Therefore, cloned and bacterially expressed ankyrinR-spectrin-binding domain (AnkSBD) is a demanded tool for studying spectrin-ankyrin interactions.
View Article and Find Full Text PDFIt is known that erythroid and non-erythroid spectrins binding of vesicles and monolayers containing PE proved sensitive to inhibition by red blood cell ankyrin. We now show that the bacterially-expressed recombinant peptides representing betaII(brain)-spectrin's ankyrin-binding domain and its truncated mutants showed lipid-binding activity, although only those containing a full-length amino terminal fragment showed high to moderate affinity towards phospholipid mono- and bilayers and a substantial sensitivity of this binding to inhibition by ankyrin. These results are in accordance with our published data on betaI-spectrin's ankyrin-binding domain [Hryniewicz-Jankowska A, et al.
View Article and Find Full Text PDFUnderstanding drug-membrane and drug-membrane protein interactions would be a crucial step towards understanding the action and biological properties of anthracyclines, as the cell membrane with its integral and peripheral proteins is the first barrier encountered by these drugs. In this paper, we briefly describe mitoxantrone-monolayer and mitoxantrone-bilayer interactions, focusing on the effect of mitoxantrone on the interactions between erythroid or nonerythroid spectrin with phosphatidylethanolamine-enriched mono- and bilayers. We found that mitoxantrone markedly modifies the interaction of erythroid and nonerythroid spectrins with phosphatidylethanolamine/phosphatidylcholine (PE/PC) monolayers.
View Article and Find Full Text PDFThe object of this paper is to review briefly the studies on the interactions of erythroid and non-erythroid spectrins with lipids in model and natural membranes. An important progress on the identification of lipid-binding sites has recently been made although many questions remain still unanswered. In particular, our understanding of the physiological role of such interactions is still limited.
View Article and Find Full Text PDFIt has been shown previously that binding of vesicles and monolayers containing PE (phosphatidylethanolamine) by either erythroid or non-erythroid spectrin proved sensitive to inhibition by purified erythrocyte ankyrin. We tested the lipid-binding affinities of the purified ankyrin-binding domain of beta-spectrin and of its truncated mutants in four ways, by analysing: (1) penetration of 'loose' PE/PC (phosphatidylcholine) monolayers; (2) binding to liposomes in suspension; (3) competition with spectrin for liposomes; and (4) binding of a PE/PC monolayer in a surface plasmon resonance system. The results obtained indicated that the full-length ankyrin-binding domain bound PE/PC mono- and bi-layers with moderate affinity, penetrated monolayers and competed with spectrin for liposomes.
View Article and Find Full Text PDF