Leukoencephalopathy with vanishing white matter (VWM) is a progressive incurable white matter disease that most commonly occurs in childhood and presents with ataxia, spasticity, neurological degeneration, seizures, and premature death. A distinctive feature is episodes of rapid neurological deterioration provoked by stressors such as infection, seizures, or trauma. VWM is caused by autosomal recessive mutations in one of five genes that encode the eukaryotic initiation factor 2B complex, which is necessary for protein translation and regulation of the integrated stress response.
View Article and Find Full Text PDFTwo variants at the gene, encoding apolipoprotein L1, account for more than 70% of the increased risk for chronic kidney disease in individuals of African ancestry. While the initiating event for APOL1 risk variant cell injury remains to be clarified, we explored the possibility of blocking APOL1 toxicity at a more upstream level. We demonstrate that deletion of the first six amino acids of exon 4 abrogates APOL1 cytotoxicity by impairing APOL1 translocation to the lumen of ER and splicing of the signal peptide.
View Article and Find Full Text PDFStroke is a leading cause of disability in the Western world. Current post-stroke rehabilitation treatments are only effective in approximately half of the patients. Therefore, there is a pressing clinical need for developing new rehabilitation approaches for enhancing the recovery process, which requires the use of appropriate animal models.
View Article and Find Full Text PDFGlutamate Dehydrogenase 1 (GDH), encoded by the Glud1 gene in rodents, is a mitochondrial enzyme critical for maintaining glutamate homeostasis at the tripartite synapse. Our previous studies indicate that the hippocampus may be particularly vulnerable to GDH deficiency in central nervous system (CNS). Here, we first asked whether mice with a homozygous deletion of Glud1 in CNS (CNS-Glud1 -/- mice) express different levels of glutamate in hippocampus, and found elevated glutamate as well as glutamine in dorsal and ventral hippocampus, and increased glutamine in medial prefrontal cortex (mPFC).
View Article and Find Full Text PDFBrain imaging has revealed that the CA1 subregion of the hippocampus is hyperactive in prodromal and diagnosed patients with schizophrenia (SCZ), and that glutamate is a driver of this hyperactivity. Strikingly, mice deficient in the glutamate synthetic enzyme glutaminase have CA1 hypoactivity and a SCZ-resilience profile, implicating glutamate-metabolizing enzymes. To address this further, we examined mice with a brain-wide deficit in the glutamate-metabolizing enzyme glutamate dehydrogenase (GDH), encoded by Glud1, which should lead to glutamate excess due to reduced glutamate metabolism in astrocytes.
View Article and Find Full Text PDFThe Arf GTPase-activating protein ArfGAP1 and its brain-specific isoform ArfGAP1B play an important role in neurotransmission. Here we analyzed the distribution of ArfGAP1 in the mouse brain. We found high levels of ArfGAP1 in the mouse dentate gyrus where it displayed especially elevated level in the polymorph layer (hilus).
View Article and Find Full Text PDFAccumulating evidences suggest that p53 is a key coordinator of cellular events triggered by oxidative stress often associated with the impairment in thiamine metabolism and its functions. However, there are limited data regarding the pursuant feedback between p53 transactivation and thiamine homeostasis. Impairment in thiamine metabolism can be induced experimentally via interference with the thiamine uptake and/or inhibition of the thiamin pyrophosphate-dependent enzymes using thiamine antagonists - amprolium (AM), oxythiamine (OT) or pyrithiamine (PT).
View Article and Find Full Text PDFIt was studied the effect of doxorubicin on the HIF system and the pro-antioxidant balance of neonatal cardiomyocytes as well as the possibility of the oxidative stress correcting using curcumin. It has been revealed that the expression of mRNA HIF-1α using doxorubicin at a dose of 0.5 μM was 2.
View Article and Find Full Text PDFMore than 12.1 million people with hypertension (32.2% of the adult population) were registered in Ukraine according to the official statistics on 1 January 2011.
View Article and Find Full Text PDFAbnormalities in oxidative metabolism and inflammation accompany many neurodegenerative diseases. The mechanisms of neurodegeneration induced by thiamine deficiency remain incompletely elucidated. The susceptibility of various types of nerve cells to thiamine (vitamin B) antagonists--oxythiamine (OT), pyrithiamine (PT) and amprolium (Am) was investigated.
View Article and Find Full Text PDFRecent evidence suggests that alterations in oxidative metabolism induced by thiamine deficiency lead to neuronal cell death. However, the molecular mechanisms underlying this process are still under extensive investigation. Here, we report that rat pheochromocytoma PC-12 cells differentiated in the presence of NGF into neurons undergo apoptosis due to thiamine deficiency caused by antagonists of thiamine - amprolium, pyrithiamine and oxythiamine.
View Article and Find Full Text PDF