Publications by authors named "Chor Yong Tay"

The fisheries and aquaculture industry are known for generating substantial waste or by-products, often underutilized, or relegated to low-value purposes. However, this overlooked segment harbors a rich repository of valuable bioactive materials of which have a broad-spectrum of high-value applications. As the blue economy gains momentum and fisheries expand, sustainable exploitation of these aquatic resources is increasingly prioritized.

View Article and Find Full Text PDF

Coordinated cell movement is a cardinal feature in tissue organization that highlights the importance of cells working together as a collective unit. Disruptions to this synchronization can have far-reaching pathological consequences, ranging from developmental disorders to tissue repair impairment. Herein, it is shown that metal oxide nanoparticles (NPs), even at low and non-toxic doses (1 and 10 µg mL), can perturb the coordinated epithelial cell rotation (CECR) in micropatterned human epithelial cell clusters via distinct nanoparticle-specific mechanisms.

View Article and Find Full Text PDF

There is a paradigm shift in biomanufacturing toward continuous bioprocessing but cell-based manufacturing using adherent and suspension cultures, including microcarriers, hydrogel microparticles, and 3D cell aggregates, remains challenging due to the lack of efficient in-line bioprocess monitoring and cell harvesting tools. Herein, a novel label-free microfluidic platform for high throughput (≈50 particles/sec) impedance bioanalysis of biomass, cell viability, and stem cell differentiation at single particle resolution is reported. The device is integrated with a real-time piezo-actuated particle sorter based on user-defined multi-frequency impedance signatures.

View Article and Find Full Text PDF

Epithelial-to-mesenchymal transition (EMT) plays a crucial role in metastatic cancer progression, and current research, which relies heavily on 2D monolayer cultures, falls short in recapitulating the complexity of a 3D tumor microenvironment. To address this limitation, a transcriptomic meta-analysis is conducted on diverse cancer types undergoing EMT in 2D and 3D cultures. It is found that mechanotransduction is elevated in 3D cultures and is further intensified during EMT, but not during 2D EMT.

View Article and Find Full Text PDF

Insights into how biological systems respond to high- and low-dose acute environmental stressors are a fundamental aspect of exposome research. However, studying the impact of low-level environmental exposure in conventional settings is challenging. This study employed a three-dimensional (3D) biomimetic microfluidic lung-on-chip (μLOC) platform and RNA-sequencing to examine the effects of two model anthropogenic engineered nanoparticles (NPs): zinc oxide nanoparticles (Nano-ZnO) and copier center nanoparticles (Nano-CCP).

View Article and Find Full Text PDF

Mesoporous silica nanoparticles have highly versatile structural properties that are suitable for a plethora of applications including catalysis, separation, and nanotherapeutics. We report a one-pot synthesis strategy that generates bimodal mesoporous silica nanoparticles via coassembly of a structure-directing Gemini surfactant (C) with a tetraethoxysilane/(3-aminopropyl)triethoxysilane-derived sol additive. Synthesis temperature enables control of the nanoparticle shape, structure, and mesopore architecture.

View Article and Find Full Text PDF

Chronic wounds are non-healing wounds characterized by a prolonged inflammation phase. Excessive inflammation leads to elevated protease levels and consequently to a decrease in growth factors at wound sites. Stem cell secretome therapy has been identified as a treatment strategy to modulate the microenvironment of chronic wounds via supplementation with anti-inflammatory/growth factors.

View Article and Find Full Text PDF

The widespread use of engineered nanomaterials (ENMs) in food products necessitates the understanding of their impact on the gastrointestinal tract (GIT). Herein, we screened several representative food-borne comparator ENMs ( ZnO, SiO and TiO nanoparticles (NPs)) and report that human colon cancer cells can insidiously exploit ZnO NP-induced adaptive response to acquire resistance against several chemotherapeutic drugs. By employing a conditioning and challenge treatment regime, we demonstrate that repeated exposure to a non-toxic dose of ZnO NPs (20 μM) could dampen the efficacy of cisplatin, paclitaxel and doxorubicin by 10-50% in monolayer culture and 3D spheroids of human colon adenocarcinoma cells.

View Article and Find Full Text PDF

Organic electrochemical transistors (OECTs) have recently attracted attention due to their high transconductance and low operating voltage, which makes them ideal for a wide range of biosensing applications. Poly-3,4-ethylenedioxythiophene:poly-4-styrenesulfonate (PEDOT:PSS) is a typical material used as the active channel layer in OECTs. Pristine PEDOT:PSS has poor electrical conductivity, and additives are typically introduced to improve its conductivity and OECT performance.

View Article and Find Full Text PDF

Waste electronic and electrical equipment are complex mixtures of valuable and/or toxic materials, which pose serious challenges in their recycling or disposal, for example, electrical transmission wires insulated in polyvinyl chloride materials. These materials are frequently found contaminated with toxic chemical elements, such as Pb, Hg, Cr, or Cd, and are discarded without decontamination. To resolve this problem, we developed a microwave-assisted extraction process to remove toxic metals from plastic e-waste.

View Article and Find Full Text PDF

Nano-enabled, toner-based printing equipment emit nanoparticles during operation. The bioactivity of these nanoparticles as documented in a plethora of published toxicological studies raises concerns about their potential health effects. These include pro-inflammatory effects that can lead to adverse epigenetic alterations and cardiovascular disorders in rats.

View Article and Find Full Text PDF
Article Synopsis
  • Focal adhesions (FAs) help cells detect the stiffness of their environment and influence cell movement through changes in the actin cytoskeleton and FA maturation.
  • Zyxin is a key protein within FAs that connects the actin structures to FAs, and its absence in NIH3T3 fibroblasts disrupts their ability to respond to changes in extracellular matrix rigidity.
  • Unlike normal fibroblasts that migrate toward stiffer areas (durotaxis), zyxin knockdown fibroblasts showed no directional migration based on substrate rigidity, highlighting zyxin's crucial role in rigidity sensing and guiding cell movement.
View Article and Find Full Text PDF

Reuse of electronic wastes is a critical aspect for a more sustainable circular economy as it provides the simplest and most direct route to extend the lifespan of non-renewable resources. Herein, the distinctive surface and micro topographical features of computer electronic-plastic (E-plastic) scraps were unconventionally repurposed as a substrate material to guide the growth and differentiation of human adipose-derived mesenchymal stem cells (ADSCs). Specifically, the E-plastics were scavenged from discarded computer components such as light diffuser plate (polyacrylates), prismatic sheet (polyethylene terephthalate), and keyboards (acrylonitrile butadiene styrene) were cleaned, sterilized, and systematically characterized to determine the identity of the plastics, chemical constituents, surface features, and leaching characteristics.

View Article and Find Full Text PDF

A short bioinspired octapeptide, GV8, can self-assemble under mild conditions into biodegradable supramolecular physical hydrogels with high storage modulus and good biocompatibility. GV8 hydrogels can encapsulate both single or multiple macromolecular protein-based therapeutics in a simple one-pot formulation manner, making it a promising candidate to address challenges faced by existing synthetic polymer or peptide hydrogels with complex gelation and drug-encapsulation processes. Alongside its versatility, the hydrogel exhibits concentration-dependent storage modulus and controlled drug-release action.

View Article and Find Full Text PDF

The increasing amount of e-waste plastics needs to be disposed of properly, and removing the brominated flame retardants contained in them can effectively reduce their negative impact on the environment. In the present work, TBBPA-bis-(2,3-dibromopropyl ether) (TBBPA-DBP), a novel brominated flame retardant, was extracted by ultrasonic-assisted solvothermal extraction process. Response Surface Methodology (RSM) achieved by machine learning (support vector regression, SVR) was employed to estimate the optimum extraction conditions (extraction time, extraction temperature, liquid to solid ratio) in methanol or ethanol solvent.

View Article and Find Full Text PDF

Improving the efficiencies of organic compound degradations by catalytic materials is a challenging materials research field. In our research, we successfully synthesized cobalt-based polyoxometalates (CoV-POMs) via a simple crystallization-driven self-assembly method. The incorporation of the newly synthesized CoV-POMs into peroxymonosulphate (PMS), forming a mixture, greatly enhancing the catalytic activation for a complete degradation of dye solution.

View Article and Find Full Text PDF

Hyperspectral imaging (HSI) provides additional information compared to regular color imaging, making it valuable in areas such as biomedicine, materials inspection and food safety. However, HSI is challenging because of the large amount of data and long measurement times involved. Compressed sensing (CS) approaches to HSI address this, albeit subject to tradeoffs between image reconstruction accuracy, time and generalizability to different types of scenes.

View Article and Find Full Text PDF

Despite being a rich source of bioactive compounds, the current exploitation of aquatic biomass is insufficient. Majority of the aquaculture industry side-streams are currently used for low-value purposes such as animal feed or composting material, with low economical returns. To maximize resource reuse and minimize waste generation, valorization efforts should be augmented with the aim to produce high-value products.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are key mediators of communication among cells, and clinical utilities of EVs-based biomarkers remain limited due to difficulties in isolating EVs from whole blood reliably. We report a novel inertial-based microfluidic platform for direct isolation of nanoscale EVs (exosomes, 50 to 200 nm) and medium-sized EVs (microvesicles, 200 nm to 1 μm) from blood with high efficiency (three-fold increase in EV yield compared to ultracentrifugation). In a pilot clinical study of healthy (n = 5) and type 2 diabetes mellitus (T2DM, n = 9) subjects, we detected higher EV levels in T2DM patients (P < 0.

View Article and Find Full Text PDF

Two-dimensional (2D) nanomaterials (NM) have emerged as promising platforms for antibacterial applications. However, the inherent "flatness" of 2D NM often limits the loading of antimicrobial components needed for synergistic bactericidal actions. Here, inspired by the highly ornamented siliceous frustules of diatoms, we prepared 2D ultrathin (<20 nm) and rigid "nanofrustule" plates the out-of-plane growth of cetyltrimethylammonium bromide (CTAB) directed silica mesostructures on the surfaces of 2D graphene oxide nanosheets.

View Article and Find Full Text PDF

Mechanistic understanding of atherosclerosis is largely hampered by the lack of a suitable in vitro human arterial model that recapitulates the arterial wall structure, and the interplay between different cell types and the surrounding extracellular matrix (ECM). This work introduces a novel microfluidic endothelial cell (EC)-smooth muscle cell (SMC) 3D co-culture platform that replicates the structural and biological aspects of the human arterial wall for modeling early atherosclerosis. Using a modified surface tension-based ECM patterning method, we established a well-defined intima-media-like structure, and identified an ECM composition (collagen I and Matrigel mixture) that retains the SMCs in a quiescent and aligned state, characteristic of a healthy artery.

View Article and Find Full Text PDF

Three-dimensional (3D) biomaterials with physiologically relevant and experimentally tractable biomechanical features are important platforms to advance our understanding of the influence of tissue mechanics in disease progression. Herein, an interpenetrating network (IPN) of collagen and alginate 3D culture system with tunable extracellular microstructure and mechanics is exploited as a tumor stroma proxy to study phenotypic plasticity of colorectal cancer-associated fibroblasts (CAF). In combination with Next Generation Sequencing (NGS) data analysis, we demonstrated that tuning the storage modulus of the IPN hydrogel between 49 and 419 Pa can trigger a reversible switch between an inflammatory (i-state, α-SMAIL-6) and myofibroblastic (m-state, α-SMAIL-6) state in CAF that is dependent on the polymer network confinement effect and ROS-HIF1-α mechanotransduction signaling axis.

View Article and Find Full Text PDF

3D cellular spheroids/microcarriers (100 µm-1 mm) are widely used in biomanufacturing, and non-invasive biosensors are useful to monitor cell quality in bioprocesses. In this work, a novel microfluidic approach for label-free and continuous-flow monitoring of single spheroid/microcarrier (hydrogel and Cytodex) based on electrical impedance spectroscopy using co-planar Field's metal electrodes is reported. Through numerical simulation and experimental validation, two unique impedance signatures (|Z | (60 kHz), |Z | (1 MHz)) which are optimal for spheroid growth and viability monitoring are identified.

View Article and Find Full Text PDF

The potential genotoxic effects of engineered nanomaterials (ENMs) may occur through the induction of DNA damage or the disruption of DNA repair processes. Inefficient DNA repair may lead to the accumulation of DNA lesions and has been linked to various diseases, including cancer. Most studies so far have focused on understanding the nanogenotoxicity of ENM-induced damages to DNA, whereas the effects on DNA repair have been widely overlooked.

View Article and Find Full Text PDF

The rise of electronic waste (e-waste) generation around the globe has become a major concern in recent times and its recycling is mostly focused on the recovery of valuable metals, such as gold, silver, and copper, etc. However, e-waste consists of a significant weight fraction of plastics (25-30%) which are either discarded or incinerated. There is a growing need for recycling of these e-waste plastics.

View Article and Find Full Text PDF