Plant environmental responses involve dynamic changes in growth and signaling, yet little is understood as to how progress through these events is regulated. Here, we explored the phenotypic and transcriptional events involved in the acclimation of the Arabidopsis thaliana seedling root to a rapid change in salinity. Using live-imaging analysis, we show that growth is dynamically regulated with a period of quiescence followed by recovery then homeostasis.
View Article and Find Full Text PDFClinal studies are a powerful tool for understanding the genetic basis of climatic adaptation. However, while clines in quantitative traits and genetic polymorphisms have been observed within and across continents, few studies have attempted to demonstrate direct links between them. The gene methuselah in Drosophila has been shown to have a major effect on stress response and longevity phenotypes based largely on laboratory studies of induced mutations in the mth gene.
View Article and Find Full Text PDFNatural selection can generate parallel latitudinal clines in traits and gene frequencies across continents, but these have rarely been linked. An amino acid (isoleucine to lysine, or I462K) polymorphism of the couch potato (cpo) gene in Drosophila melanogaster is thought to control female reproductive diapause cline in North America (Schmidt et al. 2008, Proc Natl Acad Sci USA, 105, 16207-16211).
View Article and Find Full Text PDFBiotechnol Lett
October 2010
Understanding how plants cope with environmental change requires a spatiotemporal perspective. In this review, we highlight recent work which has led to the development and use of novel tools for the high spatial and temporal-resolution analysis of the plant-environment interaction. FACS-based transcriptome and immunoprecipitation-based translatome data sets have provided an important foundation for the analysis of the transcriptional and translational control of environmental responses in each tissue layer of the plant.
View Article and Find Full Text PDF