Here, we report the first electrochemical assessment of organophosphonate-based compound as a safe electrode material for lithium-ion batteries, which highlights the reversible redox activity and inherent flame retarding property. Dinickel 1,4-benzenediphosphonate delivers a high reversible capacity of 585 mA h g with stable cycle performance. It expands the scope of organic batteries, which have been mainly dominated by the organic carbonyl family to date.
View Article and Find Full Text PDFThe roles of a partially fluorinated ether (PFE) based on a mixture of 1,1,1,2,2,3,3,4,4-nonafluoro-4-methoxybutane and 2-(difluoro(methoxy)methyl)-1,1,1,2,3,3,3-heptafluoropropane on the oxidative durability of an electrolyte under high-voltage conditions, the rate capability of the graphite and 5 V-class LiNiMnO (LNMO) electrodes, and the cycling performance of graphite/LNMO full cells are examined. Our findings indicate that the use of PFE as a cosolvent in the electrolyte yields thermally stable electrolytes with self-extinguishing ability. Electrochemical tests confirm that the PFE combined with fluoroethylene carbonate (FEC) effectively alleviates the oxidative decomposition of the electrolyte at the high-voltage LNMO cathode and enables reversible electrochemical reactions of the graphite anodes and LNMO cathodes at high rates.
View Article and Find Full Text PDFIt is known that grafting one polymer onto another polymer backbone is a powerful strategy capable of combining dual benefits from each parent polymer. Thus amphiphilic graft copolymer precursors (poly(vinylidene difluoride)-graft-poly(tert-butylacrylate) (PVDF-g-PtBA)) have been developed via atom transfer radical polymerization, and demonstrated its outstanding properties as a promising binder for high-performance lithium-ion battery (LIB) by using in situ pyrolytic transformation of PtBA to poly(acrylic acid) segments. In addition to its superior mechanical properties and accommodation capability of volume expansion, the Si anode with PVDF-g-PtBA exhibits the excellent charge and discharge capacities of 2672 and 2958 mAh g(-1) with the capacity retention of 84% after 50 cycles.
View Article and Find Full Text PDF