Publications by authors named "Chook Y"

Histone H3K9 methylation (H3K9me) by Setdb1 silences retrotransposons (rTE) by sequestering them in constitutive heterochromatin. Atf7IP is a constitutive binding partner of Setdb1 and is responsible for Setdb1 nuclear localization, activation and chromatin recruitment. However, structural details of the Setdb1/Atf7IP interaction have not been evaluated.

View Article and Find Full Text PDF

Core histones, synthesized and processed in the cytoplasm, must be chaperoned as they are transported into the nucleus for nucleosome assembly. The importin Kap114 transports H2A-H2B into the yeast nucleus, where RanGTP facilitates histone release. Kap114 and H2A-H2B also bind the histone chaperone Nap1, but how Nap1 and Kap114 cooperate in transport and nucleosome assembly remains unclear.

View Article and Find Full Text PDF
Article Synopsis
  • The nuclear export receptor XPO1 is commonly overexpressed in cancer cells, leading to mislocalization of important proteins; the inhibitor selinexor reverses this effect by blocking XPO1-cargo binding.
  • Selinexor triggers the degradation of XPO1 through a specific mechanism involving the cullin-RING E3 ubiquitin ligase (CRL) system and its substrate receptor ASB8.
  • Research using cryogenic electron microscopy revealed that selinexor stabilizes XPO1 in a unique conformation, allowing ASB8 to bind effectively and facilitate ubiquitination, showcasing a new method of protein degradation that differs from previously known molecular glue strategies.
View Article and Find Full Text PDF

Gene expression in response to environmental stimuli is dependent on nuclear localization of key signaling components, which can be tightly regulated by phosphorylation. This is exemplified by the phosphate-sensing transcription factor Pho4, which requires phosphorylation for nuclear export by the yeast exportin Msn5. Unlike the traditional hydrophobic nuclear export signal (NES) utilized by the Exportin-1/XPO1 system, cryogenic-electron microscopy structures reveal that Pho4 presents a novel, phosphorylated 35-residue NES that interacts with the concave surface of Msn5 through two Pho4 phospho-serines that align with two Msn5 basic patches, unveiling a previously unknown mechanism of phosphate-specific recognition.

View Article and Find Full Text PDF

In this issue, the discovery by Yang et al. (https://doi.org/10.

View Article and Find Full Text PDF

Disease-causing missense mutations that occur within structurally and functionally unannotated protein regions can guide researchers to new mechanisms of protein regulation and dysfunction. Here, we report that the thrombocytopenia-, myelodysplastic syndromes-, and leukemia-associated P214L mutation in the transcriptional regulator ETV6 creates an XPO1-dependent nuclear export signal to cause protein mislocalization. Strategies to disrupt XPO1 activity fully restore ETV6 P214L protein nuclear localization and transcription regulation activity.

View Article and Find Full Text PDF

Mutations in HNRNPH2 cause an X-linked neurodevelopmental disorder with features that include developmental delay, motor function deficits, and seizures. More than 90% of patients with hnRNPH2 have a missense mutation within or adjacent to the nuclear localization signal (NLS) of hnRNPH2. Here, we report that hnRNPH2 NLS mutations caused reduced interaction with the nuclear transport receptor Kapβ2 and resulted in modest cytoplasmic accumulation of hnRNPH2.

View Article and Find Full Text PDF

Previously, we showed that the nuclear import receptor Importin-9 wraps around the H2A-H2B core to chaperone and transport it from the cytoplasm to the nucleus. However, unlike most nuclear import systems where RanGTP dissociates cargoes from their importins, RanGTP binds stably to the Importin-9•H2A-H2B complex, and formation of the ternary RanGTP•Importin-9•H2A-H2B complex facilitates H2A-H2B release to the assembling nucleosome. It was unclear how RanGTP and the cargo H2A-H2B can bind simultaneously to an importin, and how interactions of the three components position H2A-H2B for release.

View Article and Find Full Text PDF

Imp9 is the primary importin for shuttling H2A-H2B from the cytoplasm to the nucleus. It employs an unusual mechanism where the binding of RanGTP is insufficient to release H2A-H2B. The resulting stable RanGTP·Imp9·H2A-H2B complex gains nucleosome assembly activity with H2A-H2B able to be deposited into an assembling nucleosome in vitro.

View Article and Find Full Text PDF

The HNRNPH2 proline-tyrosine nuclear localization signal (PY-NLS) is mutated in HNRNPH2-related X-linked neurodevelopmental disorder, causing the normally nuclear HNRNPH2 to accumulate in the cytoplasm. We solved the cryoelectron microscopy (cryo-EM) structure of Karyopherin-β2/Transportin-1 bound to the HNRNPH2 PY-NLS to understand importin-NLS recognition and disruption in disease. HNRNPH2 RPGPY is a typical R-X-P-Y motif comprising PY-NLS epitopes 2 and 3, followed by an additional Karyopherin-β2-binding epitope, we term epitope 4, at residues DRP; no density is present for PY-NLS epitope 1.

View Article and Find Full Text PDF

Core histones are synthesized and processed in the cytoplasm before transport into the nucleus for assembly into nucleosomes; however, they must also be chaperoned as free histones are toxic. The importin Kap114 binds and transports histone H2A-H2B into the yeast nucleus, where RanGTP facilitates H2A-H2B release. Kap114 and H2A-H2B also bind the Nap1 histone chaperone, which is found in both the cytoplasm and the nucleus, but how Nap1 and Kap114 cooperate in H2A-H2B processing and nucleosome assembly has been unclear.

View Article and Find Full Text PDF

Unlabelled: Padavannil et al. 2019 show that Importin-9 (Imp9) transports Histones H2A-H2B from the cytoplasm to the nucleus using a non-canonical mechanism whereby binding of a GTP-bound Ran GTPase (RanGTP) fails to evict the H2A-H2B cargo. Instead, a stable complex forms, comprised of equimolar RanGTP, Imp9, and H2A-H2B.

View Article and Find Full Text PDF

Unlabelled: The normally nuclear HNRNPH2 is mutated in -related X-linked neurodevelopmental disorder causing the protein to accumulate in the cytoplasm. Interactions of HNRNPH2 with its importin Karyopherin-β2 (Transportin-1) had not been studied. We present a structure that shows Karyopherin-β2 binding HNRNPH2 residues 204-215, a proline-tyrosine nuclear localization signal or PY-NLS that contains a typical R-X -P-Y motif, RPGPY , followed a new Karyopherin-β2 binding epitope at DRP that make many interactions with Karyopherin-β2 W373.

View Article and Find Full Text PDF

IMPORTIN-4, the primary nuclear import receptor of core histones H3 and H4, binds the H3-H4 dimer and histone chaperone ASF1 prior to nuclear import. However, how H3-H3-ASF1 is recognized for transport cannot be explained by available crystal structures of IMPORTIN-4-histone tail peptide complexes. Our 3.

View Article and Find Full Text PDF

The Karyopherin protein CRM1 or XPO1 is the major nuclear export receptor that regulates nuclear exit of thousands of macromolecules in the cell. CRM1 recognizes protein cargoes by binding to their 8-15 residue-long nuclear export signals (NESs). A ternary CRM1-Ran-RanBP1 complex engineered to be suitable for crystallization has enabled structure determination by X-ray crystallography of CRM1 bound to many NES peptides and small-molecule inhibitors.

View Article and Find Full Text PDF

CRM1 recognizes hundreds to thousands of protein cargoes by binding to the eight to fifteen residue-long nuclear export signals (NESs) within their polypeptide chains. Various assays to measure the binding affinity of NESs for CRM1 have been developed. CRM1 binds to NESs with a wide range of binding affinities, with dissociation constants that span from low nanomolar to tens of micromolar.

View Article and Find Full Text PDF

Efficient and regulated nucleocytoplasmic trafficking of macromolecules to the correct subcellular compartment is critical for proper functions of the eukaryotic cell. The majority of the macromolecular traffic across the nuclear pores is mediated by the Karyopherin-β (or Kap) family of nuclear transport receptors. Work over more than two decades has shed considerable light on how the different Kap family members bring their respective cargoes into the nucleus or the cytoplasm in efficient and highly regulated manners.

View Article and Find Full Text PDF

Histones constitute the protein components of nucleosomes. Despite their small sizes, histones do not diffuse through the nuclear pore complex. Instead, they are transported to the nucleus by importins, either alone or in complex with histone chaperones.

View Article and Find Full Text PDF

Mutations in the RNA-binding protein FUS cause familial amyotropic lateral sclerosis (ALS). Several mutations that affect the proline-tyrosine nuclear localization signal (PY-NLS) of FUS cause severe juvenile ALS. FUS also undergoes liquid-liquid phase separation (LLPS) to accumulate in stress granules when cells are stressed.

View Article and Find Full Text PDF

Background: Exportin 1 (XPO1/CRM1) is a key mediator of nuclear export with relevance to multiple cancers, including chronic lymphocytic leukemia (CLL). Whole exome sequencing has identified hot-spot somatic XPO1 point mutations which we found to disrupt highly conserved biophysical interactions in the NES-binding groove, conferring novel cargo-binding abilities and forcing cellular mis-localization of critical regulators. However, the pathogenic role played by change-in-function XPO1 mutations in CLL is not fully understood.

View Article and Find Full Text PDF

The transport of histones from the cytoplasm to the nucleus of the cell, through the nuclear membrane, is a cellular process that regulates the supply of new histones in the nucleus and is key for DNA replication and transcription. Nuclear import of histones is mediated by proteins of the karyopherin family of nuclear transport receptors. Karyopherins recognize their cargos through linear motifs known as nuclear localization/export sequences or through folded domains in the cargos.

View Article and Find Full Text PDF

The E571K mutation of CRM1 is highly prevalent in some cancers, but its mechanism of tumorigenesis is unclear. Glu571 of CRM1 is located in its nuclear export signal (NES)-binding groove, suggesting that binding of select NESs may be altered. We generated HEK 293 cells with either monoallelic CRM1WT/E571K or biallelic CRM1E571K/E571K using CRISPR/Cas9.

View Article and Find Full Text PDF

Several aggregation-prone RNA-binding proteins, including FUS, EWS, TAF15, hnRNP A1, hnRNP A2, and TDP-43, are mutated in neurodegenerative diseases. The nuclear-cytoplasmic distribution of these proteins is controlled by proteins in the karyopherin family of nuclear transport factors (Kaps). Recent studies have shown that Kaps not only transport these proteins but also inhibit their self-association/aggregation, acting as molecular chaperones.

View Article and Find Full Text PDF