Publications by authors named "Chonnipa Palasingh"

Article Synopsis
  • Xylan contributes to the strength and integrity of plant cell walls, and its role during the pulping process significantly affects its functionality in papermaking.
  • Enzymatic degradation of xylan leads to a weaker paper structure, whereas adding extra xylan enhances the paper's mechanical properties by improving fiber connections.
  • The study emphasizes that maintaining intrinsic xylan during pulping is essential for achieving optimal paper strength, as extrinsic xylan alone cannot replicate these properties.
View Article and Find Full Text PDF

Polysaccharides are excellent network formers and are often processed into films from water solutions. Despite being hydrophilic polysaccharides, the typical xylans liberated from wood are sparsely soluble in water. We have previously suggested that an additional piece to the solubilization puzzle is modification of the xylan backbone via oxidative cleavage of the saccharide ring.

View Article and Find Full Text PDF

In nanobiotechnology, the importance of controlling interactions between biological molecules and surfaces is paramount. In recent years, many devices based on nanostructured silicon materials have been presented, such as nanopores and nanochannels. However, there is still a clear lack of simple, reliable, and efficient protocols for preventing and controlling biomolecule adsorption in such structures.

View Article and Find Full Text PDF

A holistic utilization of all lignocellulosic wood biomass, instead of the current approach of using only the cellulose fraction, is crucial for the efficient, ecological, and economical use of the forest resources. Use of wood constituents in the food and feed sector is a potential way of promoting the global economy. However, industrially established food products utilizing such components are still scarce, with the exception of cellulose derivatives.

View Article and Find Full Text PDF

Xylan is a biopolymer readily available from forest resources. Various modification methods, including oxidation with sodium periodate, have been shown to facilitate the engineering applications of xylan. However, modification procedures are often optimized for semicrystalline high molecular weight polysaccharide cellulose rather than for lower molecular weight and amorphous polysaccharide xylan.

View Article and Find Full Text PDF

Reflective displays or "electronic paper" technologies provide a solution to the high energy consumption of emissive displays by simply utilizing ambient light. However, it has proven challenging to develop electronic paper with competitive image quality and video speed capabilities. Here, the first technology that provides video speed switching of structural colors with high contrast over the whole visible is shown.

View Article and Find Full Text PDF

Polymeric wood hemicelluloses are depicted to join cellulose, starch and chitosan as key polysaccharides for sustainable materials engineering. However, the approaches to incorporate hemicelluloses in emerging bio-based products are challenged by lack of specific benefit, other than the biomass-origin, although their utilization would contribute to sustainable material use since they currently are a side stream that is not valorized. Here we demonstrate wood-xylans as swelling modifiers for neutral and charged nanocellulose films that have already entered the sustainable packaging applications, however, suffer from humidity sensitivity.

View Article and Find Full Text PDF

Cellulose derivate phase separation in thin films was applied to generate patterned films with distinct surface morphology. Patterned polymer thin films are utilized in electronics, optics, and biotechnology but films based on bio-polymers are scarce. Film formation, roughness, wetting, and patterning are often investigated when it comes to characterization of the films.

View Article and Find Full Text PDF