Publications by authors named "Chonn A"

Liposomal nanoparticles (LNs) encapsulating therapeutic agents, or liposomal nanomedicines (LNMs), represent one of the most advanced classes of drug delivery systems, with several currently on the market and many more in clinical trials. During the past 20 years, a variety of techniques have been developed for encapsulating both conventional drugs and the new genetic drugs (plasmid DNA-containing therapeutic genes, antisense oligonucleotides, and small, interfering RNA [siRNA]) within LNs encompassing a very specific set of properties: a diameter centered on 100 nm, a high drug-to-lipid ratio, excellent retention of the encapsulated drug, and a long (>6 hours) circulation lifetime. Particles with these properties tend to accumulate at sites of disease, such as tumors, where the endothelial layer is "leaky" and allows extravasation of particles with small diameters.

View Article and Find Full Text PDF

Liposomes and lipid-based drug delivery systems have been used extensively over the last decade to improve the pharmacological and therapeutic activity of a wide variety of drugs. More recently, this class of carrier systems has been used for the delivery of relatively large DNA and RNA-based drugs, including plasmids, antisense oligonucleotides and ribozymes. Despite recent successes in prolonging the circulation times of liposomes, virtually all lipid compositions studied to date are removed from the plasma compartment within 24h after administration by the cells and tissues of the reticuloendothelial system (RES).

View Article and Find Full Text PDF

The recent clinical successes experienced by liposomal drug delivery systems stem from the ability to produce well-defined liposomes that can be composed of a wide variety of lipids, have high drug-trapping efficiencies and have a narrow size distribution, averaging less than 100 nm in diameter. Agents that prolong the circulation lifetime of liposomes, enhance the delivery of liposomal drugs to specific target cells, or enhance the ability of liposomes to deliver drugs intracellularly can be incorporated to further increase the therapeutic activity. The physical and chemical requirements for optimum liposome drug delivery systems will likely apply to lipid-based gene delivery systems.

View Article and Find Full Text PDF

Hemagglutinin, the membrane fusion protein of influenza virus, is known to mediate a low-pH-dependent fusion reaction between the viral envelope and the limiting membrane of the endosomal cell compartment following cellular uptake of the virus particles by receptor-mediated endocytosis. Here we exploited this activity of hemagglutinin to achieve efficient gene delivery to cultured cells. Hemagglutinin was reconstituted in the presence of the monocationic lipid dioleoyldimethylammonium chloride (DODAC) to permit plasmid binding to the virosome surface.

View Article and Find Full Text PDF

It is well established that the circulation half-life of liposomes increases with increasing dose. This effect is commonly attributed to "saturation' of the fixed and free macrophages of the reticuloendothelial system resulting in reduced clearance rates. However, it is also known that the clearance rate of liposomes is dependent on the amount of associated blood protein, leading to the possibility that dose-dependent increases in circulation lifetimes could be due to decreases in the amount of blood protein associated per liposome.

View Article and Find Full Text PDF

Cationic liposomes provide a means to introduce genes into cells both ex vivo and in vivo. In the past few years their use has been described in several tissues, e.g.

View Article and Find Full Text PDF

The in vivo association of blood proteins with large unilamellar liposomes composed of saturated phosphatidylcholines was analyzed to determine the effect of membrane fluidity and hydrocarbon chain length on liposome-plasma protein interactions and liposome clearance. Liposomes composed of dimyristoylphosphatidylcholine (DMPC), dipalmitoylphosphatidylcholine (DPPC), distearoylphosphatidylcholine (DSPC), and diarachidoylphosphatidylcholine (DAPC) were administered via the lateral tail vein of CD-1 mice and were subsequently isolated from the blood at 2 min postinjection. The protein binding ability (PB, grams of protein bound per mole total lipid) of the liposomes was quantified and related to their circulation half-lives.

View Article and Find Full Text PDF

Liposomal drug-delivery systems have come of age in recent years, with several liposomal drugs currently in advanced clinical trials or already on the market. It is clear from numerous pre-clinical and clinical studies that drugs, such as antitumor drugs, packaged in liposomes exhibit reduced toxicities, while retaining, or gaining enhanced, efficacy. This results, in part, from altered pharmacokinetics, which lead to drug accumulation at disease sites, such as tumors, and reduced distribution to sensitive tissues.

View Article and Find Full Text PDF

Liposomes recovered from the blood of liposome-treated CD1 mice were previously reported to have a complex protein profile associated with their membranes (Chonn, A., Semple, S.C.

View Article and Find Full Text PDF

Serum complement opsonizes particles such as bacteria for clearance by the reticuloendothelial system. Complement has been reported to interact with liposomes and therefore may mediate the reticuloendothelial system clearance of liposomes. This study has used a rat serum model to define some of the characteristics of liposomes which modulate their ability to activate complement.

View Article and Find Full Text PDF

Clusterin is a broadly distributed glycoprotein constitutively expressed by various tissues and cell types, that has been shown to be involved in cell-cell adhesion and expressed during cellular differentiation in vitro. To assess the suggested participation of clusterin in these processes in vivo, we have cloned the cDNA encoding murine clusterin and studied the cellular distribution of clusterin mRNA during murine embryogenesis. Sequence analysis of the cDNA encoding murine clusterin revealed 92 and 75% sequence identity with the rat and human cDNAs, respectively, and conservation of the predicted structural features which include alpha-helical regions and heparin-binding domains.

View Article and Find Full Text PDF

Clusterin is a heterodimeric multifunctional protein expressed in a variety of tissues and cells. It forms high density lipid complexes in plasma and participates in the control of the lytic activity of the late complement complex (TCC, C5b-9). Together with vitronectin, clusterin binds to the nascent amphiphilic C5b-9 complex, rendering it water soluble and lytically inactive.

View Article and Find Full Text PDF

The proteins associated with liposomes in the circulation of mice were analyzed in order to determine whether bound proteins significantly influence the fate of liposomes in vivo. Liposomes were administered intravenously via the dorsal tail vein of CD1 mice and were isolated from blood after 2 min in the absence of coagulation inhibitors using a rapid "spin column" procedure. Various negatively charged liposomes exhibiting markedly different clearance properties were studied; notably, these included liposomes containing 10 mol % ganglioside GM1 which has been previously shown to effectively limit liposomal uptake by the fixed macrophages of the reticuloendothelial system.

View Article and Find Full Text PDF

In order to facilitate the isolation of liposomes from blood components, we have developed a simple and rapid procedure combining chromatographic and centrifugal methods. This 'spin column' procedure was used to isolate liposomes from incubation mixtures with human serum or from the blood of CD1 mice after intravenous administration of liposomes. An advantage of this procedure is that processing times are fast (typically minutes) such that the isolation procedure can be done in the absence of chelators or other coagulation inhibitors which may affect protein/liposome interactions.

View Article and Find Full Text PDF

We have studied the complement-activating properties of liposomes. We show that surface charge is a key determinant of complement-activating liposomes. The nature of the charge, whether negative or positive, appears to dictate which pathway of the complement system is activated.

View Article and Find Full Text PDF

A wide range of liposome compositions have previously been examined in vivo for their ability to affect the uptake of liposomes into cells of the reticuloendothelial (RE, mononuclear phagocyte) system (Allen, T.M. and Chonn, A.

View Article and Find Full Text PDF

Particulate drug carriers, including liposomes, are rapidly removed from blood by cells of the reticuloendothelial system (RES) with resulting adverse effects on this important host defense system. In order to overcome this and other major disadvantages of liposomes, we have altered liposome composition in an effort to achieve prolonged circulation half-lives. Gangliosides and sphingomyelin act synergistically to dramatically diminish the rate and extent of uptake of liposomes by macrophages in vivo.

View Article and Find Full Text PDF

Platelet Activating Factor (PAF) (1-O-alkyl-2-acetyl sn-glycerol 3-phosphocholine) has been characterized by its ability to aggregate platelets at low concentrations and its profound hypotensive effects. There is evidence that the rate of catabolism of this compound in the plasma regulates its concentration. In humans, we and others have shown that a PAF acetylhydrolase is associated with low density lipoprotein (LDL).

View Article and Find Full Text PDF