Publications by authors named "Chongyu Zhu"

Integrating rubber with superior low-temperature capabilities, such as ethylene propylene diene monomer (EPDM), is a strategic approach to bolster the low-temperature performance of fluoroelastomer (FKM). However, FKM and EPDM are thermodynamically incompatible. This work synthetized three EPDM-based polar macromolecular compatibilizers, epoxidized EPDM (EPDM-EP), 2,2-trifluoroethylamine-grafted epoxidized EPDM (EPDM-TF), and 2,4-difluorobenzylamine-grafted epoxidized EPDM (EPDM-DF), to enhance the compatibility between FKM and EPDM.

View Article and Find Full Text PDF

Human defense against infection remains a global topic. In addition to developing novel anti-infection drugs, therapeutic drug delivery strategies are also crucial to achieving a higher efficacy and lower toxicity of these drugs for treatment. The application of hydrogels has been proven to be an effective localized drug delivery approach to treating infections without generating significant systemic adverse effects.

View Article and Find Full Text PDF

Recently, multicomponent reactions (MCRs) have attracted much attention in polymer synthesis. As one of the most well-known MCRs, the Kabachnik-Fields (KF) reaction has been widely used in the development of new functional polymers. The KF reaction can efficiently introduce functional groups into polymer structures; thus, polymers prepared via the KF reaction have unique α-aminophosphonates and show important bioactivity, metal chelating abilities, and flame-retardant properties.

View Article and Find Full Text PDF

Biocompatible self-healing hydrogels are new-generation smart soft materials that hold great promise in biomedical fields. Chitosan-based self-healing hydrogels, mainly prepared via dynamic imine bonds, have attracted broad attention due to their mild preparation conditions, excellent biocompatibility, and self-recovery ability under a physiological environment. In this review, we present a comprehensive overview of the design and fabrication of chitosan-based self-healing hydrogels, and summarize their biomedical applications in tissue regeneration, customized drug delivery, smart biosensors, and three/four dimensional (3D/4D) printing.

View Article and Find Full Text PDF

Manipulating droplets by light in microscale allows precise control of microfluidics, liquid delivery, micromachines, and so on. Among these applications, microfluidic technology is of particular interest for miniaturization of the portable analysis systems, which require the integration of various liquid operations in one device. Here, a photodeformable microfluidic platform is constructed by combining Laplace pressure and capillary condensation to integrate the transportation, fusion, separation, and mixing of liquid slugs in one chip.

View Article and Find Full Text PDF

Inspired by the action and healing process from living organisms, developing deployable devices using stimuli-responsive materials, or "smart" deployable devices, is desired to realize remote-controlled programmable deformation with additional in situ repair to perform multiple tasks while extending their service life in aerospace. In this work, a photoorganizable triple shape memory polymer (POTSMP) is reported, which is composed of an azobenzene-containing thermoplastic polyurethane. Upon UV and visible illumination, this POTSMP performs arbitrary programming of two temporary shapes and precise and stepwise shape recovery, exhibiting various temporary shapes adapted to different aerospace applications.

View Article and Find Full Text PDF

Stimuli-responsive polymers undergo changes under different environmental conditions. Among them, phenylboronic acid (PBA) containing polymers (PBA-polymers) are unique, because they can selectively react with diols to generate borates that are sensitive to pH, sugars, and H O , and can be effectively used to synthesize smart drug carriers and self-healing hydrogels. Recently, multifunctional PBA-polymers (MF-PBA-polymers) have been developed using multicomponent reactions (MCRs) to introduce PBA groups into polymer structures.

View Article and Find Full Text PDF

Photoresponsive materials offer local, temporal, and remote control over their chemical or physical properties under external stimuli, giving new tools for interfacial regulation. Among all, photodeformable azobenzene-containing liquid crystal polymers (azo-LCPs) have received increasing attention because they can be processed into various micro/nanostructures and have the potential to reversibly tune the interfacial properties through chemical and/or morphological variation by light, providing effective dynamic interface regulation. In this feature article, we highlight the milestones in the dynamic regulation of different interfacial properties through micro/nanostructures made of photodeformable azobenzene-containing liquid crystal polymers (azo-LCPs).

View Article and Find Full Text PDF

Shape memory polymers that undergo shape recovery at room temperature (RT) are desirable for their potential in vivo applications, yet challenging. Herein, light-triggered athermal shape memory effect of azopolymer networks is reported by photoswitching the glass transition temperature () rather than external heating. Thanks to the switchable of azopolymer induced by reversible isomerization, the entropic energy is trapped in low state (-form < RT) to deform into a temporary shape and fixed in high state (-form > RT).

View Article and Find Full Text PDF

Photodeformable liquid crystal polymers (LCPs) that adapt their shapes in response to light have aroused a dramatic growth of interest in the past decades, since light as a stimulus enables the remote control and diverse deformations of materials. This review focuses on the growing research on photodeformable LCPs, including their basic actuation mechanisms, the various deformation modes, the newly designed molecular structures, and the improvement of processing techniques. Special attention is devoted to the novel molecular structures of LCPs, which allow for easy processing and alignment.

View Article and Find Full Text PDF

Optically transparent polyimides with excellent thermal stability and shape memory effect have potential applications in optoelectronic devices and aerospace industries. A series of optically transparent shape memory polyimide hybrid films are synthesized from 2,2-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride (6FDA) and 2,2'-bis-(trifluoromethyl)biphenyl-4,4'-diamine (TFMB) with various polyhedral oligomeric silsesquioxane (POSS) contents and then subjected to thermal imidization. The hybrid films show good optical transparency (>80% at 400 nm and >95% at 500 nm) with cutoff wavelengths ranging from 318 to 336 nm.

View Article and Find Full Text PDF

Flexible microfluidic systems have potential in wearable and implantable medical applications. Directional liquid transportation in these systems typically requires mechanical pumps, gas tanks, and magnetic actuators. Herein, an alternative strategy is presented for light-directed liquid manipulation in flexible bilayer microtubes, which are composed of a commercially available supporting layer and the photodeformable layer of a newly designed azobenzene-containing linear liquid crystal copolymer.

View Article and Find Full Text PDF

Through the recently developed copper-mediated photoinduced living radical polymerization (CP-LRP), a novel and well-defined polymeric prodrug of the antimicrobial lipopeptide colistin has been developed. A colistin initiator (Boc-col-Br) was synthesized through the modification of colistin on both of its threonine residues using a cleavable initiator linker, 2-(2-bromo-2-methylpropanoyloxy) acetic acid (BMPAA), and used for the polymerization of acrylates via CP-LRP. Polymerization proceeds from both sites of the colistin initiator, and through the polymerization of poly(ethylene glycol) methyl ether acrylate (PEGA), three water-soluble polymer-colistin conjugates (col-PPEGA, having degrees of polymerization of 5, 10, and 20) were achieved with high yield (conversion of ≥93%) and narrow dispersities (Đ < 1.

View Article and Find Full Text PDF

Colistin methanesulfonate (CMS) is the only prodrug of colistin available for clinical use for the treatment of infections caused by multidrug-resistant (MDR) Gram-negative bacteria. Owing to its slow and variable release, an alternative is urgently required to improve effectiveness. Herein we describe a PEGylated colistin prodrug whereby the PEG is attached via a cleavable linker (col-aaPEG) introducing an acetic acid terminated poly (ethylene glycol) methyl ether (aaPEG) onto the Thr residue of colistin.

View Article and Find Full Text PDF

There is an urgent unmet medical need for new treatments for wound and burn infections caused by multidrug-resistant Gram-negative "superbugs," especially the problematic Pseudomonas aeruginosa. In this work, the incorporation of colistin, a potent lipopeptide into a self-healable hydrogel (via dynamic imine bond formation) following the chemical reaction between the amine groups present in glycol chitosan and an aldehyde-modified poly(ethylene glycol), is reported. The storage module (G') of the colistin-loaded hydrogel ranges from 1.

View Article and Find Full Text PDF

The synthesis of well-defined protein/peptide-polymer conjugates with interesting self-assembly behavior via single electron transfer living radical polymerization in water is described. A range of protein/peptides with different physical and chemical properties have been modified to macroinitiators and optimized polymerization conditions ensure successful polymerization from soluble, insoluble, and dispersed protein/peptide molecules or protein aggregates. This powerful strategy tolerates a range of functional monomers and mediates efficient homo or block copolymerization to generate hydrophilic polymers with controlled molecular weight (MW) and narrow MW distribution.

View Article and Find Full Text PDF

A straightforward method to prepare nonionic polymer (polyacrylamide, PAM) cross-linked chitosan hydrogel has been developed. The chitosan-polyacrylamide (CS-PAM) hydrogel could be quickly obtained by simply mixing of chitosan and polyacrylamide solutions under very benign condition (room temperature, <30 s). The cytotoxicity and hemocompatibility of the CS-PAM hydrogel were subsequently investigated.

View Article and Find Full Text PDF

Water dispersible carbon-dots (CDs) with tunable photoluminescence were synthesized via one-pot hydrothermal oxidation of nanodiamond and subsequently utilized for cell imaging applications. The CDs were characterized by the following techniques including transmission electron microscopy, atomic force microscopy, Fourier transform infrared spectroscopy, UV-Visible spectroscopy, and fluorescent spectroscopy. Results showed that the size of CDs is mainly distributed at 3-7 nm.

View Article and Find Full Text PDF