Zhonghua Yi Xue Yi Chuan Xue Za Zhi
November 2024
Objective: To explore the value of applying multiple genetic testing techniques for the prenatal diagnosis of Turner syndrome fetuses with complex mosaic small supernumerary marker chromosomes (sSMC).
Methods: Chromosomal karyotypes of amniotic fluid samples from 5 030 pregnant women who had undergone amniocentesis at the Prenatal Diagnosis Center of the Third Affiliated Hospital of Zhengzhou University from January to December 2022 were retrospectively reviewed. Three fetuses with complex mosaicism fetuses (carrying 2 types of sSMC) were selected as the study subjects.
Behav Res Methods
September 2024
We test whether large language models (LLMs) can be used to simulate human participants in social-science studies. To do this, we ran replications of 14 studies from the Many Labs 2 replication project with OpenAI's text-davinci-003 model, colloquially known as GPT-3.5.
View Article and Find Full Text PDFIn this study, a combined pretreatment involving autohydrolysis and p-toluenesulfonic acid (p-TsOH) was performed on poplar to coproduce xylooligosaccharides (XOSs) and monosaccharides. The autohydrolysis (180 °C, 30 min) yielded 53.2 % XOS and enhanced the delignification efficiency in the subsequent p-TsOH treatment.
View Article and Find Full Text PDFProtein arginine methyltransferase 7 (PRMT7) plays a crucial role in tumor occurrence and development; however, its expression pattern, biological function, and specific mechanism in gastric cancer (GC) remain poorly defined. The present study aimed to investigate the role of PRMT7 during GC carcinogenesis and its underlying mechanism. We found that PRMT7 is expressed at low levels in GC tissues, and this low expression is associated with tumor size, differentiation degree, lymph node metastasis, and TNM stage.
View Article and Find Full Text PDFAqueous rechargeable zinc-ion batteries (ARZIBs) are a promising next-generation energy-storage device by virtue of the superior safety and low cost of both the aqueous electrolyte and zinc-metal anode. However, their development is hindered by the lack of suitable cathodes with high volumetric capacity that can provide both lightweight and compact size. Herein, a novel cathode chemistry based on amorphous Se doped with transition metal Ru that mitigates the resistive surface layer produced by the side reactions between the Se cathode and aqueous electrolyte is reported.
View Article and Find Full Text PDFThe structural, physicochemical and digestive properties of rice starch modified by the combination of different temperature (60, 70, 80, 90 and 100 °C) preheating and pullulanase (PUL60, PUL70, PUL80, PUL90 and PUL100) treatments were investigated. The PUL60 treatment mainly modified the surface layer of starch granules, which increased the amylose content and damaged some ordered structures, resulting in slight decreases of gel strength and estimated glycemic index (eGI). With the increase of preheating temperature, PUL could act on more enzymatic sites to release a large amount of linear chains, reduce the ordered degree, and transform the A-type crystalline structure into B-type.
View Article and Find Full Text PDFThe pH-sensitive hydrogel consisting of carboxymethylated konjac glucomannan (CMKGM) and sodium trimetaphosphate (STMP) was prepared for a potential intestinal targeted delivery system. Both the CMKGM and the CMKGM hydrogel were characterized by FT-IR spectra, X-ray diffraction (XRD), and thermogravimetric analysis (TGA). The Congo red and atomic force microscope (AFM) results showed a coil-to-helix transition of CMKGM in alkaline conditions with the degree of substitution (DS) increased from 0.
View Article and Find Full Text PDFA "cooling-contraction" method to separate large-area (up to 4.2 cm in lateral size) graphene oxide (GO)-assembled films (of nanoscale thickness) from substrates is reported. Heat treatment at 3000 °C of such free-standing macroscale films yields highly crystalline "macroassembled graphene nanofilms" (nMAGs) with 16-48 nm thickness.
View Article and Find Full Text PDFThe wet-oxidation of a single crystal Cu(111) foil is studied by growing single crystal graphene islands on it followed by soaking it in water. O-labeled water is also used; the oxygen atoms in the formed copper oxides in both the bare and graphene-coated Cu regions come from water. The oxidation of the graphene-coated Cu regions is enabled by water diffusing from the edges of graphene along the bunched Cu steps, and along some graphene ripples where such are present.
View Article and Find Full Text PDFA novel pH-sensitive semi-interpenetrating polymer network (semi-IPN) hydrogel was prepared by using konjac glucomannan (KGM) and poly (γ-glutamic acid) (γ-PGA) with sodium trimetaphosphate (STMP) as the crosslinking agent. The structure of the semi-IPN hydrogels was characterized by FTIR spectra, thermogravimetric analysis (TGA), X-ray diffraction (XRD), rheological measurements, and scanning electron microscopy (SEM). The pH-sensitive effects were investigated by calculating the equilibrium swelling ratio (ESR) in buffer solutions (pH 2, 4, 6, and 8, respectively) at 37 °C.
View Article and Find Full Text PDFIn the present study, the antioxidant activities and immunostimulatory ability of a polysaccharide extracted from Chinese Sesbania cannabina, which was identified to be a galactomannan in our previous study, were investigated. The extracted polysaccharide exhibited strong DPPH, ABTS and hydroxyl radical scavenging activities and ferrous ion chelating activity in a concentration-dependent manner. The immune-enhancing effect of our polysaccharide on RAW 264.
View Article and Find Full Text PDFThe present study aimed to estimate the clinical performance of non-invasive prenatal testing (NIPT) based on high-throughput sequencing method for the detection of foetal chromosomal deletions and duplications. A total of 6348 pregnant women receiving NIPT using high-throughput sequencing method were included in our study. They all conceived naturally, without twins, triplets or multiple births.
View Article and Find Full Text PDFBiochem Biophys Res Commun
June 2020
Factor VIII (FVIII) functions as a cofactor within the intrinsic pathway of blood coagulation in process of FX activation by FIXa, for which deficiency results in the bleeding disorder hemophilia A. The gene of FVIII contains 26 exons that code for a 19 amino acid signal peptide and a 2332 amino acid polypeptide with a domain structure designated A1-A2-B-A3-C1-C2, of which the A domains are homologous with each other, as are the C domains. It has been well-documented that both the domains are the necessary elements for FVIII activities.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2020
Among large numbers of transition metal dichalcogenides (TMDCs), monolayer rhenium disulfide (ReS) is of particular interest due to its unique structural anisotropy, which opens up unprecedented opportunities in dichroic atomical electronics. Understanding the domain structure and controlling the anisotropic evolution of ReS during the growth is considered critical for increasing the domain size toward a large-scale growth of monolayer ReS. Herein, by employing angle-resolved Raman spectroscopy, we reveal that the hexagonal ReS domain is constructed by six well-defined subdomains with each -axis parallel to the diagonal of the hexagon.
View Article and Find Full Text PDFBismuth has garnered tremendous interest for Na-ion batteries (NIBs) due to potentially high volumetric capacity. Yet, the bismuth upon sodiation/desodiation experiencing structure and phase transitions remains unclear, which sets a challenge for accessing nanotechnology and nanofabrication to achieve its applicability. Here, we use in situ transmission electron microscopy to disclose the structure and phase transitions of layered bismuth (few-layer bismuth nanosheets) during Na intercalation and alloying processes.
View Article and Find Full Text PDFRaman spectra of large graphene bubbles showed size-dependent oscillations in spectral intensity and frequency, which originate from optical standing waves formed in the vicinity of the graphene surface. At a high laser power, local heating can lead to oscillations in the Raman frequency and also create a temperature gradient in the bubble. Based on Raman data, the temperature distribution within the graphene bubble was calculated, and it is shown that the heating effect of the laser is reduced when moving from the center of a bubble to its edge.
View Article and Find Full Text PDFA high density of edge sites and other defects can significantly improve the catalytic activity of layered 2D materials. Herein, this study demonstrates a novel top-down strategy to maximize catalytic edge sites of MoSe by breaking up bulk MoSe into quantum dots (QDs) via "turbulent shear mixing" (TSM). The ultrasmall size of the MoSe QDs provides a high fraction of atoms in reactive edge sites, thus significantly improving the catalytic activities.
View Article and Find Full Text PDFVacuum filtration enables the fabrication of large-area graphene-based membranes (GBMs), possessing a smoother surface than that by spray, spin coating or drop casting. However, due to the strong interaction with substrates, the separation of thin GBMs from the filter is problematic. Conventional stamping separation/transfer of graphene oxide (GO) thin films requires another substrate and pressing for >10 h, which may damage the delicate structure of the transfer substrates.
View Article and Find Full Text PDFBlack phosphorus quantum dots (BPQDs) have been prepared by a high turbulent shear rate generated from a household kitchen blender. A layer-by-layer disintegration mechanism of bulk BP crystals is suggested. As-synthesized BPQDs have shown excellent humidity sensing and photothermal converting properties.
View Article and Find Full Text PDF