Publications by authors named "Chongxia Yue"

Effectively promoting skin wound healing remains a significant challenge in the medical field. Although stem cell-derived exosomes show potential in tissue regeneration, their local delivery and sustained release face challenges. To address these issues, we developed a collagen sponge based on type I and recombinant humanized type III collagen.

View Article and Find Full Text PDF

Effective intercellular communication is crucial for tissue repair and regeneration, with exosomes playing a key role in mediating these processes by transferring proteins, lipids, and nucleic acids between cells. This study explored the mechanisms underlying the uptake of exosomes derived from human dental pulp stem cells (hDPSCs), human umbilical vein endothelial cells (HUVECs), and human fibroblasts (HFBs). Our findings revealed that hDPSCs exhibited the greatest capacity for exosome uptake across all three cell types.

View Article and Find Full Text PDF

Exosomes, nanoscale extracellular vesicles crucial for intercellular communication, hold great promise as a therapeutic avenue in cell-free tissue regeneration. In this study, we identified and utilized exosomes to adorn anodized titanium scaffolds, inducing osteogenic differentiation in human dental pulp stem cells (hDPSCs). The osteogenesis of hDPSCs was stimulated by exosomes derived from hDPSCs that underwent various periods of osteogenic differentiation.

View Article and Find Full Text PDF

Robotic systems have revolutionized various industries, and dentistry is no exception. Recently, due to the robust advancements in artificial intelligence and technology, there has been a significant evolution of dental robotic systems, ranging from surgeon-controlled and robot-assisted operations to more autonomous processes. The present clinical case report describes a 1-year follow-up of the successful use of an autonomous dental implant robot system with an osseodensification protocol for implant osteotomy preparation, maxillary sinus elevation, and simultaneous implant placement at the maxillary second premolar site.

View Article and Find Full Text PDF

Bacterial contamination during biomaterial implantation is often unavoidable, yielding a combat between cells and bacteria. Here we aim to determine the modulatory function of bacterial components on stem-cell, fibroblast, and osteoblast adhesion to a titanium alloy, including the role of toll-like-receptors (TLRs). Presence of heat-sacrificed Staphylococcus epidermidis, Staphylococcus aureus, Escherichia coli, or Pseudomonas aeruginosa induced dose and cell-type dependent responses.

View Article and Find Full Text PDF

Photocatalytic-activation of anodized TiO2-surfaces has been demonstrated to yield antibacterial and tissue integrating effects, but effects on simultaneous growth of tissue cells and bacteria in co-culture have never been studied. Moreover, it is unknown how human-bone-marrow-mesenchymal-stem (hBMMS) cells, laying the groundwork for integration of titanium implants in bone, respond to photocatalytic activation of anodized TiO2-surfaces. Photocatalytically-activated, anodized titanium and titanium-alloy surfaces achieved 99.

View Article and Find Full Text PDF

Anti-inflammatory properties of bioactive titanium metals prepared by anodic oxidation (AO-Ti) and alkali-heat (AH-Ti) treatments were studied by bacterial adhesion test and myeloperoxidase (MPO) activity assay methods. The bioactivities of the metals were also evaluated by apatite formation ability and osteoblasts culture experiments. Both metals could induce apatite formation and support osteoblasts proliferation.

View Article and Find Full Text PDF