Exposure to blue light can lead to retinal degeneration, causing adverse effects on eye health. Although the loss of retinal cells due to blue light exposure has been observed, the precise molecular mechanisms underlying this process remain poorly understood. In this study, we investigate the role of alpha-crystallin A (CRYAA) in neuro-retinal degeneration and their regulation by blue light.
View Article and Find Full Text PDFBackground: MicroRNA (miRNA)-21-5p participates in various biological processes, including cancer and autoimmune diseases. However, its role in the development of fibrosis in the in vivo model of systemic sclerosis (SSc) has not been reported. This study investigated the effects of miRNA-21a-5p overexpression and inhibition on SSc fibrosis using a bleomycin-induced SSc mouse model.
View Article and Find Full Text PDFDysregulation of gene expression is critical for the progression of cancer. The augmented expression of hnRNP A1 in patients with hepatocellular carcinoma (HCC) has been related to its oncogenic functions. However, the underlying mechanisms responsible for upregulation of hnRNP A1 have not been fully elucidated.
View Article and Find Full Text PDFThe acquisition of drug resistance is a major hurdle for effective cancer treatment. Although several efforts have been made to overcome drug resistance, the underlying mechanisms have not been fully elucidated. This study investigated the role of long non-coding RNA (lncRNA) growth arrest-specific 5 (GAS5) in drug resistance.
View Article and Find Full Text PDFHuD, an RNA binding protein, plays a role in the regulation of gene expression in certain types of cells, including neuronal cells and pancreatic β-cells, via RNA metabolism. Its aberrant expression is associated with the pathogenesis of several human diseases. To explore HuD-mediated gene regulation, stable cells expressing short hairpin RNA against HuD were established using mouse neuroblastoma Neuro2a (N2a) cells, which displayed enhanced phenotypic characteristics of cellular senescence.
View Article and Find Full Text PDFPurpose: To identify the effects of superoxide dismutase (SOD)3 on diabetes mellitus (DM)-induced retinal changes in a diabetic rat model.
Methods: Diabetic models were established by a single intraperitoneal injection of streptozotocin (STZ) in Sprague-Dawley rats. After purification of the recombinant SOD3, intravitreal injection of SOD3 was performed at the time of STZ injection, and 1 and 2 weeks following STZ injection.
Although morphological changes in microglia have been reported to be associated with diabetic retinopathy, little is known about the early changes in the microglia and macrophages during the progression of this condition. The present study was aimed at characterizing retinal microglial activation in the early stages of experimental diabetic retinopathy. Toward this end, a model of diabetic retinopathy was generated by intraperitoneally injecting male Sprague-Dawley rats with streptozotocin.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2020
RNA binding protein HuD regulates translation and turnover of target mRNAs, thereby affecting gene expression at the posttranscriptional level in mainly neuronal as well as pancreatic β-cells. Here, we identified insulinoma-associated 1 (INSM1), an essential factor governing differentiation and proliferation of neuroendocrine cells, as a novel target of HuD and demonstrated the regulatory mechanism of INSM1 expression by HuD. HuD bound to 3'untranslated region (3'UTR) of Insm1 mRNA and negatively regulated its expression; knockdown of HuD increased INSM1 expression, while HuD overexpression repressed it by destabilizing its mRNA.
View Article and Find Full Text PDFImbalanced mitochondrial dynamics in pancreatic β-cells contributes to β-cell dysfunction in diabetes; however, the molecular mechanisms underlying mitochondrial dynamics in the pathology of diabetes are not fully elucidated. We previously reported the reduction of RNA binding protein HuD in pancreatic β-cells of diabetes. Herein, we demonstrate that HuD plays a novel role in the regulation of mitochondrial dynamics by promoting mitochondrial fusion.
View Article and Find Full Text PDFmicroRNAs regulate a diverse spectrum of cancer biology, including tumorigenesis, metastasis, stemness, and drug resistance. To investigate miRNA-mediated regulation of drug resistance, we characterized the resistant cell lines to 5-fluorouracil by inducing stable expression of miRNAs using lenti-miRNA library. Here, we demonstrate miR-551a as a novel factor regulating cell survival after 5-FU treatment.
View Article and Find Full Text PDFAutophagy is a process of lysosomal self-degradation of cellular components by forming autophagosomes. Autophagosome formation is an essential process in autophagy and is fine-tuned by various autophagy-related gene (ATG) products, including ATG5, ATG12, and ATG16. Although several reports have shown that numerous factors affect multiple levels of gene regulation to orchestrate cellular autophagy, the detailed mechanism of autophagosome formation still needs further investigation.
View Article and Find Full Text PDFLong non-coding RNAs (lncRNAs) have emerged as pivotal regulators of gene expression by influencing various biological processes including proliferation, apoptosis, differentiation, and senescence. Accumulating evidence implicates lncRNAs in the maintenance of metabolic homeostasis; dysregulation of certain lncRNAs promotes the progression of metabolic disorders such as diabetes, obesity, and cardiovascular diseases. In this review, we discuss our understanding of lncRNAs implicated in metabolic control, focusing on in particular diseases arising from chronic inflammation, insulin resistance, and lipid homeostasis.
View Article and Find Full Text PDFFor the majority of patients diagnosed with pancreatic neuroendocrine tumors (NETs), there is significant malignant potential with a poor prognosis; however, the molecular abnormalities and pathogenesis of pancreatic NETs have not been firmly established. Here, we report that loss of expression of the RNA-binding protein HuD correlates with low p27 (p27) levels and poor prognosis in pancreatic NETs. HuD expression was frequently lost in many human pancreatic NETs, and these pancreatic NETs showed aggressive clinicopathological phenotypes with low p27 levels, increased tumor size, higher World Health Organization grade and pT stage of the tumor, and the presence of angioinvasion.
View Article and Find Full Text PDFMultidrug resistance is one major barrier to successful chemotherapy. Although several studies have attempted to overcome resistance of cancer cells to anti-cancer drugs, key determinants of resistance remain largely unknown. The objective of this study was to investigate whether microRNAs might play a role in the acquisition of resistance.
View Article and Find Full Text PDFCellular senescence is a complex biological process that leads to irreversible cell-cycle arrest. Various extrinsic and intrinsic insults are associated with the onset of cellular senescence and frequently accompany genomic or epigenomic alterations. Cellular senescence is believed to contribute to tumor suppression, immune response, and tissue repair as well as aging and age-related diseases.
View Article and Find Full Text PDFAcquisition of resistance to anti-cancer drugs is a significant obstacle to effective cancer treatment. Although several efforts have been made to overcome drug resistance in cancer cells, the detailed mechanisms have not been fully elucidated. Here, we investigated whether microRNAs (miRNAs) function as pivotal regulators in the acquisition of anti-cancer drug resistance to 5-fluorouracil (5-FU).
View Article and Find Full Text PDFMicroRNAs (miRNAs) are small non-coding RNAs that negatively regulate gene expression by suppressing translation or facilitating mRNA decay. Differential expression of miRNAs is involved in the pathogenesis of several diseases including cancer. Here, we investigated the role of-miR-24-3p as a downregulated miRNA in metastatic cancer.
View Article and Find Full Text PDFMitochondrial morphology is dynamically regulated by the formation of small fragmented units or interconnected mitochondrial networks, and this dynamic morphological change is a pivotal process in normal mitochondrial function. In the present study, we identified a novel regulator responsible for the regulation of mitochondrial dynamics. An assay using CHANG liver cells stably expressing mitochondrial-targeted yellow fluorescent protein (mtYFP) and a group of siRNAs revealed that T-cell intracellular antigen protein-1 (TIA-1) affects mitochondrial morphology by enhancing mitochondrial fission.
View Article and Find Full Text PDFAlthough triglyceride (TG) accumulation in the pancreas leads to β-cell dysfunction and raises the chance to develop metabolic disorders such as type 2 diabetes (T2DM), the molecular mechanisms whereby intracellular TG levels are regulated in pancreatic β cells have not been fully elucidated. Here, we present evidence that the RNA-binding protein HuD regulates TG production in pancreatic β cells. Mouse insulinoma βTC6 cells stably expressing a small hairpin RNA targeting HuD (shHuD) (βTC6-shHuD) contained higher TG levels compared to control cells.
View Article and Find Full Text PDF