Publications by authors named "Chongshen Kuang"

Delayed neurocognitive recovery (dNCR) is a prevalent complication after surgery in older adults. Neuroinflammation plays a pivotal role in the pathogenesis of dNCR. Recently,compelling evidence suggests that theinvolvement of microglia pyroptosis in the regulation of neuroinflammation in neurologicaldiseases.

View Article and Find Full Text PDF

Delayed neurocognitive recovery (dNCR) after surgery is a common postoperative complication in older adult patients. Our previous studies have demonstrated that cognitive impairment after surgery involves an increase in the brain renin-angiotensin system (RAS) activity, including overactivation of the angiotensin 2/angiotensin receptor-1 (Ang II/AT1) axis, which provokes the disruption of the hippocampal blood-brain barrier (BBB). Nevertheless, the potential role of the counter-regulatory RAS axis, the Ang-(1-7)/Mas pathway, in dNCR remains unknown.

View Article and Find Full Text PDF

Objective: To investigate the dynamic changes of intestinal flora in septic model mice.

Methods: Forty-two male SPF C57BL/6 mice were selected, the sepsis model was reproduced by cecal ligation and puncture (CLP), and the experimental mice were divided into CLP 6-12 hours group (n = 9) and 1, 2, 3 days group (all n = 10) and Sham group (n = 3) according to the time points after modeling. Intestinal flora 16S rRNA sequencing was carried out within feces from the colonic lumen of mice, and the effective sequences were clustered to obtain an operational classification unit (OTU) for statistical analysis of biological information, including Alpha diversity analysis, species composition analysis, principal coordinate analysis (PCoA analysis) and species difference analysis (LEfSe analysis), the dynamic changes of intestinal flora after CLP modeling were analyzed.

View Article and Find Full Text PDF

Systemic inflammation often induces neuroinflammation and disrupts neural functions, ultimately causing cognitive impairment. Furthermore, neuronal inflammation is the key cause of many neurological conditions. It is particularly important to develop effective neuroprotectants to prevent and control inflammatory brain diseases.

View Article and Find Full Text PDF

Stress-induced α-synuclein aggregation, especially the most toxic species (oligomers), may precede synaptic and cognitive dysfunction. Under pathological conditions, α-synuclein is degraded primarily through the autophagic/lysosomal pathway. We assessed the involvement of autophagy in α-synuclein aggregation and cognitive impairment following general anesthesia and surgical stress.

View Article and Find Full Text PDF