Ferroptosis is an iron-dependent and lipid peroxides (LPO)-overloaded programmed damage cell death, induced by glutathione (GSH) depletion and glutathione peroxide 4 (GPX4) inactivation. However, the inadequacy of endogenous iron and reactive oxygen species (ROS) restricts the efficacy of ferroptosis. To overcome this obstacle, a near-infrared photo-responsive FeP@PEG NPs is fabricated.
View Article and Find Full Text PDFTo increase the colonization of electroactive bacteria and accelerate the rate of extracellular electron transfer, a simple coated anode of microbial fuel cell was designed. Here, we took advantage of vanadium nitride (VN) particles to modify the carbon cloth (VN@CC). Compared with bare carbon cloth, the designed VN@CC bioanodes exhibited a larger electrochemically active area, better biocompatibility, and smaller charge transfer impedance.
View Article and Find Full Text PDFFlexible electrode array, a new-generation neural microelectrode, is a crucial tool for information exchange between living tissues and external electronics. Till date, advances in flexible neural microelectrodes are limited because of their high impedance and poor mechanical consistency at tissue interfaces. Herein, a highly sensitive and omnidirectionally stretchable polymeric electrode array (PEA) is introduced.
View Article and Find Full Text PDFUndoubtedly, taking full advantage of near-infrared light (NIR) for the photocatalytic reaction is a promising way to realize the efficient utilization of solar energy. In this work, zirconium carbide (ZrC) has been exploited as a NIR-driven photoactive substance for the simultaneous photodegradation of organic pollutants and photothermal sterilization of Escherichia coli (E. coli).
View Article and Find Full Text PDFThere is great potential for photodynamic therapy (PDT)-enhanced photothermal therapy (PTT) to be used for tumor therapy, especially for the single material-mediated process that could greatly simplify the experimental arrangements. This study presents a new cancer phototherapeutic agent consisting of low-work-function lanthanum hexaboride particles, which are excellent light absorbers in the near-infrared (NIR) region. The photothermal effect and reactive oxygen species production were realized by LaB6 under NIR light irradiation.
View Article and Find Full Text PDFOropharyngeal squamous cell carcinoma (OPSCC) is one of most common cancers that often brings lots of inconvenience to the patient in swallowing and phonation even after the operation. Moreover, OPSCC is typically as nodal metastases and high recurrence rate due to the high-risk human papillomavirus (HPV) infection for 90% of patients. Obviously, completely curing OPSCC requires simultaneous removal of solid tumor and related pathogenic virus, which is very indispensable but never be realized by any kind of clinical therapy up to now.
View Article and Find Full Text PDFRealizing near-infrared (NIR) driven photocatalytic reaction is one of the promising strategies to promote the solar energy utilization and photocatalytic efficiencies. However, effective reactive oxygen species (ROS) activation under NIR irradiation remains to be great challenge for nearly all previously reported photocatalysts. Herein, the cubic-phase tungsten nitride (WN) with strong plasmonic NIR absorption and low-work function (≈3.
View Article and Find Full Text PDFPeroxidase nanoenzymes exhibit a specific affinity toward substrates, thereby demonstrating application potential for realizing the colorimetric immunoassays of hydrogen peroxide (HO), which can be further used as a probe for imaging cancer cells. To enhance the intrinsic peroxidase activity of molybdenum sulfide (MoS) nanomaterials, gold (Au) nanoparticles with an average diameter of approximately 2.1 nm were modified on a MoS/carbon surface (denoted as MoS/C-Au) via ascorbic acid reduction.
View Article and Find Full Text PDFRealization of phototherapy on the big animal modal with orthotopic tumor is of considerable significance in view of its great clinical relevance to the human deep tumor treatment. Herein, near infrared (NIR)-active ZrN nanoparticles were chosen for both of photothermal and photodynamic purposes to achieve the synergetic phototherapy on mice with subcutaneous tumor and even rabbits bearing with orthotopic tumor. Broad and strong photoabsorption, photosensitive ROS generation and photothermal effect of ZrN nanoparticles together made it to be ideal candidate for the effective tumor photoablation.
View Article and Find Full Text PDFAlthough great advances have been made in photothermal therapy, the efforts hitherto have mainly achieved antitumor effects in mice with a subcutaneous tumor model, which is less clinically relevant. Therefore, it is very urgent to make further progress in investigating the possibility of larger animal models with orthotopically xenografted tumors for further clinical trials. Herein, macrophage-loaded tungsten carbide has been employed for the photothermal ablation of orthotopic breast tumors in rabbits in a targetable way.
View Article and Find Full Text PDFThe development of photoactive nanomaterials with high biocompatibility for targeted tumor phototherapy is of great significance for antitumor applications; this study presents a novel phototherapeutic agent, the Ge/GeO2 complex, which shows broad photoabsorption in the near infrared (NIR) region. As a result, it can synchronously produce reactive oxygen species (ROS) and heat under NIR irradiation. After being loaded onto macrophages, Ge/GeO2 could be delivered to tumors in a targeted fashion.
View Article and Find Full Text PDFIn this paper, the free-standing macroporous carbon anode is prepared by one-step carbonization of pinecone without any further modification. The obtained anode is N, P-codoped porous carbon material, which is beneficial for electrochemical active bacterial adhesion and the fast start-up of cells. Both of the output voltage and long-term operation stability of the obtained anode are higher than that of carbon felt.
View Article and Find Full Text PDFMultifunctional theranostic platforms, especially single component-based platforms, enable both cancer treatment and real-time imaging as well as enhance the efficiency of treatment. In this study, 50 nm Mo2C nanospheres were explored as a "one-for-all" theranostic agent. The light-harvesting of Mo2C covered the entire near infrared region, and NIR irradiation concurrently triggered hyperthermia and reactive oxygen species (ROS) production; thus, synergistic outcomes of photothermal and photodynamic therapy could be realized.
View Article and Find Full Text PDFPrecise oncotherapy requires effective cancer treatments that are guided by clinical imaging techniques. One of the most representative cases is multi-imaging-guided phototherapy. This study presents a novel multifunctional theranostic agent of SnxWO3 tungsten bronze, which is an excellent light absorber in the near infrared (NIR) range.
View Article and Find Full Text PDFOf the many strategies for precise tumor treatment, near-infrared (NIR) light-activated "one-for-all" theranostic modality with real-time diagnosis and therapy has attracted extensive attention from researchers. Herein, a brand-new theranostic nanoplatform was established on versatile vanadium nitride (VN) nanosheets, which show significant NIR optical absorption, and resultant photothermal effect and reactive oxygen species activity under NIR excitation, thereby realizing the synergistic action of photothermal/photodynamic co-therapy. As expected, systematic in vitro and in vivo antitumor evaluations demonstrated efficient cancer cell killing and solid tumor removal without recurrence.
View Article and Find Full Text PDFA WO3-x/TiO2-x nanotube array (NTA) heterojunction photoanode was strategically designed to improve photoelectrocatalytic (PEC) performance by establishing a synergistic vacancy-induced self-doping effect and localized surface plasmon resonance (LSPR) effect of metalloid non-stoichiometric tungsten suboxide. The WO3-x/TiO2-x NTA heterojunction photoanode was synthesized through a successive process of anodic oxidation to form TiO2 nanotube arrays, magnetron sputtering to deposit metalloid WO3-x, and post-hydrogen reduction to engender oxygen vacancy in TiO2-x as well as crystallization. On the merits of such a synergistic effect, WO3-x/TiO2-x shows higher light-harvesting ability, stronger photocurrent response, and resultant improved photoelectrocatalytic performance than the contrast of WO3-x/TiO2, WO3/TiO2 and TiO2, confirming the importance of oxygen vacancies in improving PEC performance.
View Article and Find Full Text PDFOver the past years the performance of electrochromic smart windows with the promising potential for significant energy savings has been progressively improved; however, the electrochromic windows have not yet to come into use at scale mainly because the electrochromic materials suffer from some significant drawbacks such as low coloration efficiency, slow switching time, bad durability and poor functionality. Herein, we fabricate the optically modulated electrochromic smart devices through sequential deposition of the crown-type polyoxometalates, KLiHPWO·92HO (PW), and WO nanowires. Unlike most reported electrochromic smart devices, the resulting PW and WO nanocomposites allow active and selective manipulation of the transmittance of near-infrared (750-1360 nm) and visible light (400-750 nm) by varying the applied potential.
View Article and Find Full Text PDFTheranostics that combines the disease diagnosis with treatment is of promising application in the foreground of personalized medicine to achieve a precise treatment with minimum side effects. In this work, we strategically designed a "four-in-one" theranostic nanoplatform for realizing the desired imaging-guided phototherapy, in which functions of fluorescent imaging, photoacoustic imaging tomography (PAT), photothermal therapy (PTT) and photodynamic therapy (PDT) were implemented by bioconjugated MoS nanosheets. The protagonist of MoS is a light-harvesting material in the near-infrared (NIR) region, which would produce localized hyperthermia at the tumor site to trigger the photothermal therapy effect for the tumor ablation as well as a PAT signal to depict the tumor concurrently upon NIR excitation.
View Article and Find Full Text PDFThis work provides a roll-to-roll processed flexible multi-responsive smart film containing tungsten bronze nanorods and a phase-separated liquid crystal-polymer composite, which can reversibly control the passage of visible light in response to temperature, an electric field and near infrared light, and also screen the heat rays from 800 nm to 2500 nm.
View Article and Find Full Text PDFAgWO is a significant photocatalyst that responds to UV light irradiation only, which greatly hinders it for further practical application for solar light. To address this problem, herein, 1D plasmonic Ag/AgWO photocatalysts have been fabricated by a successive process including hydrothermal synthesis to obtain AgWO followed by an additional in situ chemical-reduction process for Ag decoration. Then, the structural features, optical properties, and electronic structures of AgWO and Ag/AgWO nanowires were systematically investigated via a combination of theoretical calculations and experimental evidence.
View Article and Find Full Text PDFWe herein present oxygen-deficient molybdenum oxide quantum dots (MoO QDs), which possess matching-absorption-spectrum to solar light in both visible and near infrared regions, for proof-of-concept of interfacial water evaporation. Theoretical modeling suggests that the unique optical property of MoO QDs results from oxygen defect level, instead of localized surface plasmon resonance.
View Article and Find Full Text PDFImage-guided phototherapy is considered to be a prospective technique for cancer treatment because it can provide both oncotherapy and bioimaging, thus achieving an optimized therapeutic efficacy and higher treatment accuracy. Compared to complicated systems with multiple components, using a single material for this multifunctional purpose is preferable. In this work, we strategically fabricated poly(acrylic acid)- (PAA-) coated Cu(OH)PO quantum dots [denoted as Cu(OH)PO@PAA QDs], which exhibit a strong near-infrared photoabsorption ability.
View Article and Find Full Text PDFA theranostic system of image-guided phototherapy is considered as a potential technique for cancer treatment because of the ability to integrate diagnostics and therapies together, thus enhancing accuracy and visualization during the treatment. In this work, we realized photoacoustic (PA) imaging-guided photothermal (PT)/photodynamic (PD) combined cancer treatment just via a single material, MoO quantum dots (QDs). Due to their strong NIR harvesting ability, MoO QDs can convert incident light into hyperthermia and sensitize the formation of singlet oxygen synchronously as evidenced by in vitro assay, hence, they can behave as both PT and PD agents effectively and act as a "dual-punch" to cancer cells.
View Article and Find Full Text PDFCs WO nanorods coated with polyelectrolyte multilayers are developed as "four-in-one" multifunctional nanomaterials with significant potential for computed tomography/photoacoustic tomography bimodal imaging-guided photothermal/photodynamic cancer treatment.
View Article and Find Full Text PDF