Publications by authors named "Chongpin Huang"

The efficient conversion of carbohydrates to 5-hydroxymethylfurfural (5-HMF) under mild conditions represents a very attractive and promising method of producing important building blocks. In this work, niobium phosphotungstates, with Nb/P molar ratios of 0.6, 1.

View Article and Find Full Text PDF

Selective oxidation has an important role in environmental and green chemistry (e.g., oxidative desulfurization of fuels and oxidative removal of mercury) as well as chemicals and intermediates chemistry to obtain high-value-added special products (e.

View Article and Find Full Text PDF

Conversion of carbohydrate into 5-hydroxymethylfurfural (5- HMF), a versatile, key renewable platform compound is regarded as an important transformation in biomass-derived carbohydrate chemistry. A variety of ILs, not only acidic but also alkaline ILs, were synthesized and used as catalyst in the production of 5-HMF from disaccharide. Several factors including reaction temperature, IL dosage, solvent and reaction time,were found to influence the yield of 5-HMF from cellobiose.

View Article and Find Full Text PDF

Ionic liquid (IL) has been widely investigated in 5-HMF production from biomass. However, most of studies employed IL as reaction solvent which requires a large amount of IL. In the present study, IL was utilized as catalyst in the conversion of microcrystalline cellulose (MCC) to 5-HMF under microwave irradiation (MI) in N,N-dimethylacetamide (DMAc) containing LiCl.

View Article and Find Full Text PDF

The dehydration of fructose or glucose to 5-hydroxymethylfurfural (5-HMF) using room temperature ionic liquids (ILs) as a solvent is a promising method for producing liquid fuels from renewable resources. The IL, 1-hydroxyethyl-3-methylimidazolium tetrafluoroborate ([C(2)OHMIM]BF(4)), was used a catalyst-rather than as a solvent-in the conversion of fructose or glucose to 5-HMF. With glucose, the yield of 5-HMF reached as high as 67.

View Article and Find Full Text PDF

The dehydration of fructose to 5-hydroxymethylfurfural (5-HMF) with room temperature ionic liquids (ILs) is a way of producing liquid fuels from renewable resources, but separation of products and IL is energy intensive. In this work, a heteropolyacid salt of an IL-forming cation functionalized with a propanesulfonate group, 1-(3-sulfonicacid)propyl-3-methyl imidazolium phosphotungstate ([MIMPS](3)PW(12)O(40)), was used as a catalyst-rather than as a solvent-in the conversion of fructose to 5-HMF. The maximum yield of 5-HMF was 99.

View Article and Find Full Text PDF