We propose an adaptive detection technique in super-Nyquist wavelength-division-multiplexed (WDM) polarization-division-multiplexed quadrature-phase-shift-keying (PDM-QPSK) systems, where a QPSK signal is digitally converted to a quadrature n-level polybinary signal followed by a MLSE detector at the receiver, and study the performance of quadrature-duobinary and quadrature four-level polybinary signals using this detection technique. We change the level of the quadrature-polybinary modulation at the coherent receiver according to the channel spacing of a super-Nyquist system. Numerical studies show that the best performance can be achieved by choosing different modulation levels at the receiver in adaption to the channel spacing.
View Article and Find Full Text PDFIntegrated semiconductor lasers on silicon are one of the most crucial devices to enable low-cost silicon photonic integrated circuits for high-bandwidth optic communications and interconnects. While optical amplifiers and lasers are typically realized in III-V waveguide structures, it is beneficial to have an integration approach which allows flexible and efficient coupling of light between III-V gain media and silicon waveguides. In this paper, we propose and demonstrate a novel fabrication technique and associated transition structure to realize integrated lasers without the constraints of other critical processing parameters such as the starting silicon layer thicknesses.
View Article and Find Full Text PDFWe present a monolithic polarization diversity coherent receiver by employing 120-degree optical hybrids on a silicon photonic integrated circuit (PIC). This PIC monolithically integrates silicon inverse tapers for fiber coupling, silicon polarization splitters, germanium high-speed photo detectors, and 120-degree optical hybrids based on 3x3 multimode interferometers (MMI). We demonstrate that 112-Gb/s polarization-division-multiplexed quadrature phase-shift keyed signals are detected in the wavelength range of 1530-1580 nm with comparable performance to commercial receivers.
View Article and Find Full Text PDFWe generate a 105.7-Gb/s signal by directly modulating a 1.5-µm VCSEL with a 33.
View Article and Find Full Text PDFWe present a monolithic dual-polarization quadrature phase-shift keying (QPSK) modulator based on a silicon photonic integrated circuit (PIC). This PIC consists of four high-speed silicon modulators, a polarization rotator, and a polarization beam combiner. A 112-Gb/s polarization-division-multiplexed (PDM) QPSK modulation is successfully demonstrated.
View Article and Find Full Text PDFWe transmit a mix of 260-Gb/s polarization-division-multiplexed 16-ary quadrature-amplitude modulation (PDM-16QAM) and 130-Gb/s polarization-division-multiplexed quadrature-phase-shift-keying (PDM-QPSK) channels at a 50-GHz channel spacing in a dispersion-managed (DM) system with standard single-mode-fiber (SSMF) spans. We study the impact of pulse shaping, time interleaving of polarizations and maximum likelihood (ML) detection techniques on the performance of the system. We show that the pulse shaping and ML detection can increase the transmission distances of the PDM-16QAM channels and PDM-QPSK channels by 50% and 10%, respectively.
View Article and Find Full Text PDFWe report the first successful demonstration of quadrature phase-shift keying (QPSK) modulation using two nested silicon Mach-Zehnder modulators. 50-Gb/s QPSK signal is generated with only 2.7-dB optical signal-to-noise ratio penalties from the theoretical limit at a bit-error ratio of 10(-3).
View Article and Find Full Text PDFAdvanced optical modulation formats are a key technology to increase the capacity of optical communication networks. Mach-Zehnder modulators are typically used to generate various modulation formats. Here, we report the first experimental demonstration of quadrature phase-shift keying (QPSK) modulation using compact microring modulators.
View Article and Find Full Text PDFSoft-decision forward error correction (SD-FEC) schemes are typically designed for additive white Gaussian noise (AWGN) channels. In a fiber-optic communication system, noise may be neither circularly symmetric nor Gaussian, thus violating an important assumption underlying SD-FEC design. This paper quantifies the impact of non-AWGN noise on SD-FEC performance for such optical channels.
View Article and Find Full Text PDFWe demonstrate a single-ended colorless coherent receiver using symmetric 3x3 couplers for optical hybrids. We show that the receiver can achieve colorless reception of fifty-five 112-Gb/s polarization-division-multiplexed quadrature-phase-shift-keyed (PDM-QPSK) channels with less than 1-dB penalty in the back-to-back operation. The receiver also works well in a long-haul wavelength-division-multiplexed (WDM) transmission system over 2560-km TrueWave® REACH fiber.
View Article and Find Full Text PDFCoherent detection with digital signal processing (DSP) significantly changes the ways impairments are managed in optical communication systems. In this paper, we review the recent advances in understanding the impact of fiber nonlinearities, polarization-mode dispersion (PMD), and polarization-dependent loss (PDL) in coherent optical communication systems. We first discuss nonlinear transmission performance of three coherent optical communication systems, homogeneous polarization-division-multiplexed (PDM) quadrature-phase-shift-keying (QPSK), hybrid PDM-QPSK and on/off keying (OOK), and PDM 16-ary quadrature-amplitude modulation (QAM) systems.
View Article and Find Full Text PDFWe investigate polarization mode dispersion (PMD) and polarization dependent loss (PDL) impairments in polarization division multiplexing (PDM) signals with optical polarization demultiplexing and direct detection. We find that the time alignment between the bits in the two polarizations has a significant impact on the PMD impairments, and PMD impairments also depend on the bandwidth of PDM signals, whereas PDL impairments have little dependence on the relative time alignment between the two polarizations and the signal bandwidth. We show that with a proper configuration of the polarization demultiplexing, the PDL-induced crosstalk between the two polarizations can be completely eliminated.
View Article and Find Full Text PDFUsing numerical simulations, we study and compare the performance of 42.8-Gb/s and 112-Gb/s intradyne coherent polarization-division- multiplexed quadrature-phase-shift-keying (PDM-QPSK) systems in wavelength-division-multiplexed (WDM) transmission with inline dispersion compensation fiber (DCF) and that with fully electronic dispersion compensation. Two effects are considered in the studies.
View Article and Find Full Text PDFWe propose a new automatic optical polarization demultiplexing scheme for polarization division multiplexed (PDM) signals, which uses the radio frequency (RF) power from a low frequency RF power detector as a control signal. This scheme is based on the intrinsic characteristics of PDM signals and does not need to add a special signal at a PDM transmitter. The effectiveness of this demultiplexing method is experimentally demonstrated in a 2x10 Gb/s on-off-keying (OOK) PDM transmission system.
View Article and Find Full Text PDFWe demonstrate and analyze data modulation of terahertz (THz) signals in the 1 Mbit/s range. THz pulse trains are phase and amplitude encoded with pseudorandom binary data, transmitted over a short distance, and detected. Different modulation formats are generated.
View Article and Find Full Text PDFTiming jitter induced by soliton collisions is the leading nonlinear penalty in wavelength-division-multiplexed (WDM) dispersion-managed soliton transmission. Through analysis and numerical simulations we show that consecutive complete collisions together with partial collisions at the system output cause approximately the same amount of timing shift as partial collisions at the system input. We further show that the worst-case timing shift diverges logarithmically with the total number of WDM channels and linearly with the total transmission distance.
View Article and Find Full Text PDFWe report an analysis of the noise statistics for an optically preamplified differential phase-shift keying (DPSK) receiver with balanced and single-port detections. It is found that identical signal-amplified spontaneous emission beating noise exists for bits 1 and 0 in DPSK balanced detection. It is also revealed that the bit error ratio (BER) of a DPSK receiver with balanced detection has no direct relation to the conventional Q factor.
View Article and Find Full Text PDFNonlinear polarization rotation between a pump and a probe signal in a highly nonlinear fiber is used as a modulation process to generate 80-Gbit/s return-to-zero differential phase-shift keying signals. Its performance is analyzed and compared with a conventional on-off keying modulated signal.
View Article and Find Full Text PDFInterchannel cross-phase-modulation-induced polarization scattering (XPMIPS) and its effect on the performance of optical polarization mode dispersion (PMD) compensation in wavelength-division-multiplexed (WDM) systems are studied. The level of XPMIPS in long-haul WDM transmission systems is theoretically quantified, and its effect on optical PMD compensation is evaluated with numerical simulations. We show that in 10-Gbit/s ultra-long-haul dense WDM systems XPMIPS could reduce the PMD compensation efficiency by 50%, whereas for 40-Gbit/s systems the effect of XPMIPS is smaller.
View Article and Find Full Text PDFIn an all-Raman amplified, recirculating loop containing 100-km spans, we have tested dense wavelength-division multiplexing at 10 Gbits/s per channel, using dispersion-managed solitons and a novel, periodic-group-delay-complemented dispersion-compensation scheme that greatly reduces the timing jitter from interchannel collisions. The achieved working distances are approximately 9000 and approximately 20,000 km for uncorrected bit error rates of <10(-8) and <10(-3), respectively, the latter corresponding to the use of "enhanced" forward error correction; significantly, these distances are very close to those achievable in single-channel transmission in the same system.
View Article and Find Full Text PDFThe formula for the time shift of a dispersion-managed soliton that results from its collision with other solitons in different channels consists of two terms, one related to the frequency shift during collision, and the other related to the residual frequency shift after collision. It is found that an optimal relative delay exists between pulses in adjacent channels after each dispersion-managed span that balances the contributions from the two terms and minimizes the overall time shift, leading to a substantial improvement in transmission performance.
View Article and Find Full Text PDFWe show how replacement of a modest fraction of the usual fiber-based dispersion compensation with a periodic-group-delay dispersion-compensating module can result in a drastic reduction in collision-induced timing jitter in dense wavelength-division multiplexing with dispersion-managed solitons. The principal mechanism here is a correspondingly large reduction in the net path over which a pair of colliding pulses interact.
View Article and Find Full Text PDF