The tumor microenvironment (TME) is a combination of tumor cells and indigenous host stroma, which consists of tumor-infiltrating immune cells, endothelial cells, fibroblasts, pericytes, and non-cellular elements. Tumor-associated macrophages (TAMs) represent the major tumor-infiltrating immune cell type and are generally polarized into two functionally contradictory subtypes, namely classical activated M1 macrophages and alternatively activated M2 macrophages. Macrophage polarization refers to how macrophages are activated at a given time and space.
View Article and Find Full Text PDFInflammation plays a crucial role in the physical response to danger signals, the elimination of toxic stimuli, and the restoration of homeostasis. However, dysregulated inflammatory responses lead to tissue damage, and chronic inflammation can disrupt osteogenic-osteoclastic homeostasis, ultimately leading to bone loss. Maresin1 (MaR1), a member of the specialized pro-resolving mediators (SPMs) family, has been found to possess significant anti-inflammatory, anti-allergic, pro-hemolytic, pro-healing, and pain-relieving properties.
View Article and Find Full Text PDFSoft tissue seal around implant prostheses is considered the primary barrier against adverse external stimuli and is a critical factor in maintaining dental implants' stability. Soft tissue seal is formed mainly by the adhesion of epithelial tissue and fibrous connective tissue to the transmembrane portion of the implant. Type 2 diabetes mellitus (T2DM) is one of the risk factors for peri-implant inflammation, and peri-implant disease may be triggered by dysfunction of the soft tissue barrier around dental implants.
View Article and Find Full Text PDFBackground: Osteogenesis of lateral window sinus elevation surgery is the key to placement of the subsequent implant, excessive collapse of the sub-antral space may adversely affect long-term stability of implants. At present, few studies focus on the influence of the contact area of the sub-antral space on osteogenesis. This study evaluated whether the change in the contact area of the sub-antral space with maxillary sinus bone and the Schneiderian membrane can affect osteogenesis.
View Article and Find Full Text PDFThe mechanism of the impact of hyperlipidemia on bone tissue homeostasis is unclear, and the role of lipophagy is yet to be investigated. This study investigated changes in lipophagy and osteogenesis levels under hyperlipemic conditions and explored the effects of lipophagy on bone regeneration. In vivo, femurs of mice with diet-induced moderate hyperlipidemia were ground out with a ball drill to create defects.
View Article and Find Full Text PDFMitochondria-associated membranes (MAMs), physical connection sites between the endoplasmic reticulum (ER) and the outer mitochondrial membrane (OMM), are involved in numerous cellular processes, such as calcium ion transport, lipid metabolism, autophagy, ER stress, mitochondria morphology, and apoptosis. Autophagy is a highly conserved intracellular process in which cellular contents are delivered by double-membrane vesicles, called autophagosomes, to the lysosomes for destruction and recycling. Autophagy, typically triggered by stress, eliminates damaged or redundant protein molecules and organelles to maintain regular cellular activity.
View Article and Find Full Text PDFMaresin1 (MaR1) is an endogenous pro-resolving lipid mediator produced from polyunsaturated fatty acids and is believed to have antioxidant and anti-inflammatory properties. The objective of this study was to estimate MaR1's impact on type 2 diabetic osteoporosis (T2DOP) and its pharmacological mode of action. An in vitro high-glucose model of the osteoblast cell line MC3T3-E1 was constructed and stimulated with MaR1.
View Article and Find Full Text PDF