Background: Accumulation of coumarins plays key roles in response to immune and abiotic stress in plants, but the genetic adaptation basis of controlling coumarins in perennial woody plants remain unclear.
Results: We detected 792 SNPs within 334 genes that were significantly associated with the phenotypic variations of 15 single-metabolic traits and multiple comprehensive index, such as principal components (PCs) of coumarins metabolites. Expression quantitative trait locus mapping uncovered that 337 eQTLs associated with the expression levels of 132 associated genes.
Rare variants contribute significantly to the 'missing heritability' of quantitative traits. The genome-wide characteristics of rare variants and their roles in environmental adaptation of woody plants remain unexplored. Utilizing genome-wide rare variant association study (RVAS), expression quantitative trait loci (eQTL) mapping, genetic transformation, and molecular experiments, we explored the impact of rare variants on stomatal morphology and drought adaptation in Populus.
View Article and Find Full Text PDF