Publications by authors named "Chongchong She"

3-nitro-1,2,4-triazol-5-one (NTO) has been widely used as a kind of insensitive single-compound explosive owing to its excellent balance between safety and explosive energy. To reduce its possible acid corrosion and extend its application to insensitive ammunition, acid protection research on NTO-based explosives is significant. Traditionally, the acid protection effect was evaluated by metal corrosion, which is time-consuming and qualitative.

View Article and Find Full Text PDF

Non-ignition impact and heat stimuli are the most common external stimuli loaded on energetic materials. Nevertheless, there is thereby an urgent need, but it is still a significant challenge to comprehend their coupling effects on the decay and safety mechanisms of energetic materials. Then, reactive molecular dynamics simulation was employed to mimic practical situations and reveal the impact heat coupling effect on the decay mechanism of FOX-7.

View Article and Find Full Text PDF

We report a reactive molecular dynamic (ReaxFF-MD) study using the newly parameterized ReaxFF-lg reactive force field to explore the initial decomposition mechanism of 3-Nitro-1,2,4-triazol-5-one (NTO) under shock loading (shock velocity >6 km/s). The new ReaxFF-lg parameters were trained from massive quantum mechanics data and experimental values, especially including the bond dissociation curves, valence angle bending curves, dihedral angle torsion curves, and unimolecular decomposition paths of 3-Nitro-1,2,4-triazol-5-one (NTO), 1,3,5-Trinitro-1,3,5-triazine (RDX), and 1,1-Diamino-2,2-dinitroethylene (FOX-7). The simulation results were obtained by analyzing the ReaxFF dynamic trajectories, which predicted the most frequent chain reactions that occurred before NTO decomposition was the unimolecular NTO merged into clusters ((CHON)).

View Article and Find Full Text PDF

A series of isomers of tetranitro-bis-1,2,4-triazoles were designed, and their electronic structures, heats of formation, densities, detonation performances, thermal stabilities, and impact sensitivities were investigated by density functional theory (DFT). The structure and energetic properties of 1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX) were also calculated at the same level. On comparing with the detonation velocity and pressure and bond dissociation energy (BDE) of HMX, it was found that four isomers (BT2, BT5, BT6, BT7) have higher detonation performances than HMX and three isomers (BT5, BT6, BT7) have better thermal stabilities than HMX.

View Article and Find Full Text PDF