Publications by authors named "Chongchao Wu"

Elevated expression and genetic aberration of IRTKS, also named as BAIAP2L1, have been observed in many tumors, especially in tumor progression. however, the molecular and cellular mechanisms involved in the IRTKS-enhanced tumor progression are obscure. Here we show that higher IRTKS level specifically increases histone H3 lysine 9 trimethylation (H3K9me3) by promoting accumulation of the histone methyltransferase SETDB1.

View Article and Find Full Text PDF

Insulin signaling is mediated by a highly integrated network that controls glucose metabolism, protein synthesis, cell growth, and differentiation. Our previous work indicates that the insulin receptor tyrosine kinase substrate (IRTKS), also known as BAI1-associated protein 2-like 1 (BAIAP2L1), is a novel regulator of insulin network, but the mechanism has not been fully studied. In this work we reveal that IRTKS co-localizes with Src homology (SH2) containing inositol polyphosphate 5-phosphatase-2 (SHIP2), and the SH3 domain of IRTKS directly binds to SHIP2's catalytic domain INPP5c.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores the developmental stages of fetal liver stem/progenitor cells (LSPCs) in mice, aiming to better understand their differentiation and maturation through a marker-free single-cell RNA sequencing approach.
  • Researchers analyzed transcriptional profiles from 507 cells across various stages of liver development, discovering distinct genetic controls guiding LSPCs' developmental trajectories.
  • The findings reveal key insights into LSPCs' fate decisions and suggest potential isolation biomarkers, contributing valuable resources for further study.
View Article and Find Full Text PDF

Background And Objectives: IRTKS functions as a novel regulator of tumour suppressor p53; however, the role of IRTKS in pathogenesis of gastric cancer is unclear.

Design: We used immunohistochemistry to detect IRTKS levels in 527 human gastric cancer specimens. We generated both -deficient and -deficient mice to observe survival time of these mice and to isolate mouse embryonic fibroblasts (MEFs) for evaluating in vivo tumorigenicity.

View Article and Find Full Text PDF

Proteins that contain jumonji C (JmjC) domains have recently been identified as major contributors to various malignant human cancers through epigenetic remodeling. However, the roles of these family members in the pathogenesis of hepatocellular carcinoma (HCC) are obscure. By mining public databases, we found that the HCC patients with lower JmjC domain-containing protein 5 (JMJD5) expression exhibited shorter survival time.

View Article and Find Full Text PDF

Influenza A virus (IAV) has been raising public health and safety concerns worldwide. Cyanovirin-N (CVN) is a prominent anti-IAV candidate, but both cytotoxicity and immunogenicity have hindered the development of this protein as a viable therapy. In this article, linker-CVN (LCVN) with a flexible and hydrophilic polypeptide at the N-terminus was efficiently produced from the cytoplasm of Escherichia coli at a >15-l scale.

View Article and Find Full Text PDF

Cyanovirin-N (CVN) potently inhibits human immunodeficiency virus type 1 (HIV-1) infection, but both cytotoxicity and immunogenicity have hindered the translation of this protein into a viable therapeutic. A molecular docking analysis suggested that up to 12 residues were involved in the interaction of the reverse parallel CVN dimer with the oligosaccharide targets, among which Leu-1 was the most prominent hot spot residue. This finding provided a possible explanation for the lack of anti-HIV-1 activity observed with N-terminal PEGylated CVN.

View Article and Find Full Text PDF

This work developed novel chitosan-halloysite nanotubes (HNTs) nanocomposite (NC) scaffolds by combining solution-mixing and freeze-drying techniques, and aimed to show the potential application of the scaffolds in tissue-engineering. The hydrogen bonding and electrostatic attraction between chitosan and HNTs were confirmed by spectroscopy and morphology analysis. The interfacial interactions resulted in a layer of chitosan absorbed on the surfaces of HNTs.

View Article and Find Full Text PDF

Incorporation of nanosized reinforcements into chitosan usually results in improved properties and changed microstructures. Naturally occurred halloysite nanotubes (HNTs) are incorporated into chitosan for forming bionanocomposite films via solution casting. The electrostatic attraction and hydrogen bonding interactions between HNTs and chitosan are confirmed.

View Article and Find Full Text PDF