Objective: To investigate the mechanism of ATP-sensitive potassium channel (K(ATP)) activator cromakalim (CRK) on action potentials and transient inward current (I(ti)) in isolated guinea pig papillary and ventricular myocytes and to explore the mechanisms of effects of I(ti) and K(ATP) treatment in idiopathic ventricular tachycardia.
Methods: The whole-cell patch clamp recording technique was used to detect the action potentials and I(ti) and K(ATP) current alterations during the stimulated and triggered activity. Myocytes were isolated from guinea pig ventricle by enzyme digestion.