Biodiversity loss, exotic plant invasion and climatic change are three important global changes that can affect litter decomposition. These effects may be interactive and these global changes thus need to be considered simultaneously. Here, we assembled herbaceous plant communities with five species richness levels (1, 2, 4, 8 or 16) and subjected them to a drought treatment (no, moderate or intensive drought) that was factorially combined with an invasion treatment (presence or absence of the non-native Symphyotrichum subulatum).
View Article and Find Full Text PDFThe study aims to identify relations of denitrifying bacterial and fungal communities to nitrogen removals in vertical flow wetland microcosms (VFWMs) using four macrophyte species (Iris pseudacorus, Canna glauca, Scirpus validus and Cyperus alternifolius) and three species richness levels (unplanted, monocultured and 4-species mixture) as fixed factors. Results showed that among four macrophyte species, only Canna glauca planting significantly decreased nitrate removal by 87.7% in the VFWMs.
View Article and Find Full Text PDFThe fungal community composition, size and several physico-chemical properties were individually investigated in ten macrophyte rhizospheric substrates using nested PCR-denaturing gradient gel electrophoresis and soil chemical methods. Results indicated that both Dothideomycetes and Sordariomycetes were dominant fungi in macrophyte rhizospheric substrates, and denitrifying fungi (Fusarium graminearum) was found in nine of ten macrophyte rhizospheres. Fungal Shannon-Wiener diversity index (H) and richness (S) in Thalia dealbata, Typha latifolia, Iris hexagona and Hemerocallis aurantiaca rhizospheres were higher than those in other six rhizospheres.
View Article and Find Full Text PDFYing Yong Sheng Tai Xue Bao
April 2016
To investigate the effects of Spartina alterniflora invasion on methane emission from coastal salt marsh, three S. alterniflora invasive levels were established nearby Taizhou City of Zhejiang Province, including native community, mixed community with S. alterniflora and native weeds, and mono-community of S.
View Article and Find Full Text PDFBackground: Phytoextraction is an environmentally acceptable and inexpensive technique for mine tailing rehabilitation that uses metallophyte plants. These plants reduce the soil trace metal contents to environmentally acceptable levels by accumulating trace metals. Recently, whether more trace metals can be removed by species-rich communities of these plants received great attention, as species richness has been reported having positive effects on ecosystem functions.
View Article and Find Full Text PDFThe effects of planting type and species richness on removal of BOD5, COD, nitrogen and phosphorus were studied in mesocosms with monocot alone (M), dicot alone (D) and mixed planting of M+D, where each planting type had four species richness levels. Above- and below-ground plant biomasses increased with the M and M+D species richness as shown by one-way ANOVA. The M+D type had the highest above-ground biomass, whereas the M type had the highest below-ground biomass among planting types.
View Article and Find Full Text PDFA pot experiment was conducted to study the effects of simulated acid rain (pH 4.0, 5.0) and Cu (0-200 mg x kg(-1)) on the physiological characteristics of Paulownia fortunei and its detoxification mechanism.
View Article and Find Full Text PDFThis study focused on the relationship between plant diversity (six species richness levels) and nutrient retention and enzyme activities associated with carbon, nitrogen and phosphorus cycling in a full-scale constructed wetland (CW) fed with post-treatment domestic wastewater. Effects of plant species richness on nutrient retention and enzyme activities were assessed using soil chemical and zymological methods, respectively. Retention of NH(4)-N and NO(3)-N in the wetland substrate increased with increasing species richness, while phosphorus retention significantly decreased under the richness level of 16 species per plot.
View Article and Find Full Text PDFYing Yong Sheng Tai Xue Bao
August 2008
Vegetation coverage is an important parameter in terrestrial ecological process, meteorological, and climatic models. By eliminating the errors from the precision of image classification and the noises of remote sensing images, and by using the actual data from fieldwork, this paper determined the maximum and minimum values of normalized difference vegetation index (NDVI), improved the sub-pixel model, and verified this model by calculating the vegetation coverage of Beijing. The results showed that the estimation value of the improved model was very close to the measurements, especially for the herbaceous plants whose vegetation types were the same but the densities were different.
View Article and Find Full Text PDF