Publications by authors named "Chong-Xiu Sun"

Mitochondrial dysfunction, which can be caused by metabolic stressors such as oxidized low-density lipoprotein (oxLDL), sensitizes the endothelium to pathological changes. The transcription factor interferon regulatory factor 1 (IRF-1) is a master regulator of inflammation, previously shown to promote oxLDL-induced inflammatory pyroptosis in human aortic endothelial cells (HAEC). However, a presumed role for IRF-1 in regulating the intrinsic apoptotic pathway in response to metabolic stress has not been demonstrated.

View Article and Find Full Text PDF

Cell inflammation and death are closely linked processes contributing to endothelial dysfunction, which plays a critical role in atherogenesis. Activation of the NLRP3 inflammasome causes pyroptosis, the Gasdermin D (GSDMD)-mediated inflammatory cell death. The non-canonical NF-κB pathway has been implicated in inflammation; however, its role in NLRP3 inflammasome-mediated endothelial dysfunction has not been investigated.

View Article and Find Full Text PDF

Clinically used inhibitors of mammalian target of rapamycin (mTOR) negatively impacts endothelial-dependent vasodilatation (EDD) through unidentified mechanisms. Here we show that either the endothelium-specific deletion of Mtor to inhibit both mTOR complexes, or depletion of Raptor or Rictor to disrupt mTORC1 or mTORC2, causes impaired EDD, accompanied by reduced NO in the serum of mice. Consistently, inhibition of mTOR decreases NO production by human and mouse EC.

View Article and Find Full Text PDF

Compromised endothelial-cell (EC) barrier function is a hallmark of inflammatory diseases. mTOR inhibitors, widely applied as clinical therapies, cause pneumonitis through mechanisms that are not yet fully understood. This study aimed to elucidate the EC mechanisms underlying the pathogenesis of pneumonitis caused by mTOR inhibition (mTORi).

View Article and Find Full Text PDF

Increased expression of vascular cell adhesion molecule (VCAM)-1 on the activated arterial endothelial cell (EC) surface critically contributes to atherosclerosis which may in part be regulated by epigenetic mechanisms. This study investigated whether and how the clinically available histone deacetylases 1 and 2 (HDAC1/2) inhibitor drug Romidepsin epigenetically modulates VCAM-1 expression to suppress atherosclerosis. VCAM-1 expression was analyzed in primary human aortic EC (HAEC) treated with Romidepsin or transfected with HDAC1/2-targeting siRNA.

View Article and Find Full Text PDF

Aims: Mammalian target of rapamycin (mTOR) inhibitors used in drug-eluting stents (DES) to control restenosis have been found to delay endothelialization and increase incidence of late-stent thrombosis through mechanisms not completely understood. We revealed that mTOR inhibition (mTORi) upregulated the expression of cell growth suppressor IRF-1 in primary human arterial endothelial cells (HAEC). This study aimed to examine how mTOR-regulated IRF-1 expression contributes to the suppressive effect of mTORi on arterial endothelial proliferation.

View Article and Find Full Text PDF

Increased expression of vascular cell adhesion molecule 1 (VCAM-1) on the aortic endothelium is an early marker of atherogenesis, promoted in part by elevated levels of inflammatory cytokines such as TNF-α. Mammalian target of rapamycin (mTOR) is a ubiquitous signaling molecule that has been considered to contribute to diverse cellular processes through mTOR complex 1 (mTORC1) or complex 2 (mTORC2). This study aimed to elucidate the role of mTOR signaling in TNF-α-induced VCAM-1 expression by the arterial endothelium.

View Article and Find Full Text PDF

To explore the structural basis of ligand binding to alphaIIbbeta3, we conducted a site-directed mutagenesis of Y178, which is located in the ligand-specificity region (C177-C184) of the beta3 subunit. Two mutant beta3 constructs, Y178A and Y178I, were transfected into CHO cells and co-expressed with human alphaIIb subunit on the cell surface. Our results showed that the Y178A mutation affected processing and cell surface exposure of recombinant alphaIIbbeta3 receptor, abrogated the binding of PAC-1, a ligand-mimetic antibody, to alphaIIbbeta3 pre-treated with the known activator DTT.

View Article and Find Full Text PDF

Activation or ligand binding induces conformational changes in alpha IIb beta3, resulting in exposure of neoepitopes named ligand-induced binding sites. We reported here a novel monoclonal antibody developed by using Chinese hamster ovary (CHO) cells expressing an activated alpha IIb beta3 mutant (CHO alpha IIb beta3Delta717) as the immunogen. This IgG 2b kappa named 3C7 was specific for the complex of alpha IIb beta3 as demonstrated by flow cytometry, immunoprecipitation, and EDTA chelating.

View Article and Find Full Text PDF