Publications by authors named "Chong Soo Lee"

Product miniaturization is a trend for facilitating product usage, enabling product functions to be implemented in microscale geometries, and aimed at reducing product weight, volume, cost and pollution. Driven by ongoing miniaturization in diverse areas including medical devices, precision equipment, communication devices, micro-electromechanical systems (MEMS) and microsystems technology (MST), the demands for micro metallic products have increased tremendously. Such a trend requires development of advanced micromanufacturing technology of metallic materials for producing high-quality micro metallic products that possess excellent dimensional tolerances, required mechanical properties and improved surface quality.

View Article and Find Full Text PDF

Nb carbides have attracted significant attention to enhance the resistance of tempered martensitic (TM) steel to hydrogen embrittlement (HE). However, previous studies have elucidated the role of Nb carbides in HE resistance without categorizing their types (i.e.

View Article and Find Full Text PDF

Superplasticity describes a material's ability to sustain large plastic deformation in the form of a tensile elongation to over 400% of its original length, but is generally observed only at a low strain rate (~10 s), which results in long processing times that are economically undesirable for mass production. Superplasticity at high strain rates in excess of 10 s, required for viable industry-scale application, has usually only been achieved in low-strength aluminium and magnesium alloys. Here, we present a superplastic elongation to 2000% of the original length at a high strain rate of 5 × 10 s in an Al(CoCrFeMnNi) (at%) high-entropy alloy nanostructured using high-pressure torsion.

View Article and Find Full Text PDF

A study was performed to investigate the hydrogen embrittlement behavior of 18-Ni 300 maraging steel produced by selective laser melting and subjected to different heat treatment strategies. Hydrogen was pre-charged into the tensile samples by an electro-chemical method at the constant current density of 1 A m and 50 A m for 48 h at room temperature. Charged and uncharged specimens were subjected to tensile tests and the hydrogen concentration was eventually analysed using quadrupole mass spectroscopy.

View Article and Find Full Text PDF

In this study, the ideal alloying element (among Cr, V, and Mo carbides) to enhance the resistance to hydrogen embrittlement (HE) in a tempered martensitic steel was investigated. Four types of steels were designed to contain cementites, Cr-rich MC carbides, V carbides, and Mo carbides, respectively. These steels were tailored to possess a comparable tensile strength (~1.

View Article and Find Full Text PDF

The rolling texture formed in the conventional cold rolling process of commercially pure titanium (CP-Ti) for producing a metal sheet significantly limits the potential applications of CP-Ti sheets in various industrial sectors by impairing the formability. Here, we report that by exploiting a twinning-induced crystallographic texture modification, the rolling texture can be weakened and dispersed effectively, leading to a simultaneous improvement in the formability and yield strength. A two-stage cold rolling process was designed with intermediate annealing at a late stage of the conventional cold rolling process to generate deformation twins.

View Article and Find Full Text PDF

Development of submicrocrystalline structure in biomedical alloy such as Ti-13Nb-13Zr (in wt%) through warm-rolling process has been found to enhance mechanical properties compared to conventional thermomechanical processing routes including hot-rolling process. The present study investigated the tribological and corrosion behaviors of warm-rolled (WR) and hot-rolled Ti-13Nb-13Zr alloys which have not been studied to date. Both tribological and corrosion experiments were carried out in simulated body fluid conditions (Hank's solution at 37°C) based on the fact that the investigated alloys would be used in a human body as orthopedic implants.

View Article and Find Full Text PDF

Titanium (Ti) and its alloys with a high mechanical strength and a small diameter can be effectively exploited for minimally invasive dental implantation. Here, we report a multipass caliber-rolled Ti alloy of Ti13Nb13Zr (MPCR-TNZ) with a high mechanical strength and strong fatigue characteristics. For further dental applications, MPCR-TNZ was surface-modified with reduced graphene oxide (RGO) and loaded with osteogenic dexamethasone (Dex) via π-π stacking on the graphitic domain of RGO.

View Article and Find Full Text PDF

Objective: Metallic implantation materials having high yield strength, low elastic modulus, and non-cytotoxic alloying elements would be advantageous for the long-term stability of implants. This study assessed the surface and mechanical properties, and also in vitro osteoconductivity of ultrafine-grained (UFG) Ti-13Nb-13Zr alloy produced by dynamic globularization without any severe deformation for future biomedical applications as an endosseous implant material.

Material And Methods: The surface characteristics and mechanical properties were investigated by orientation image microscopy, contact angle measurements, optical profilometry, and uniaxial tension tests.

View Article and Find Full Text PDF

This study investigated the surface characteristics and in vitro biocompatibility of ultrafine-grain pure titanium substrates produced by equal channel angular pressing (ECAP) using MC3T3-E1 pre-osteoblast cells, compared with those of conventional coarse-grain pure titanium (CP) and Ti-6Al-4V (Ti64) substrates. All Ti surfaces were grit-blasted with hydroxyapatite particles to produce microrough surfaces. The surface characteristics were evaluated by electron back-scattered diffractometry, scanning electron microscopy, contact angle and surface energy measurements, and optical profilometry.

View Article and Find Full Text PDF

This study investigated the surface characteristics and bone response of titanium implants produced by hydrothermal treatment using H(3)PO(4), and compared them with those of implants produced by commercial surface treatment methods - machining, acid etching, grit blasting, grit blasting/acid etching or spark anodization. The surface characteristics were evaluated by scanning electron microscopy, thin-film X-ray diffractometry, X-ray photoelectron spectroscopy, contact angle measurement and stylus profilometry. The osteoconductivity of experimental implants was evaluated by removal torque testing and histomorphometric analysis after 6 weeks of implantation in rabbit tibiae.

View Article and Find Full Text PDF

The purpose of this study was to investigate the potential effectiveness of a surface-modified natural calcium carbonate, hen eggshell (ES) as a bone graft substitute. The surface characteristics, cell viability on, and osteoconductivity of, particulated ES with and without hydrothermal treatment in phosphate solutions were evaluated. Hydrothermal treatment partially converted ES to calcium-deficient hydroxyapatite (HA) with surface microstructure.

View Article and Find Full Text PDF