Publications by authors named "Chong Hua Zhang"

The development of gel electrophoresis-based biodetection assays for point-of-care analysis are highly demanding. In this work, we proposed a ratiometric gel electrophoresis-based biosensing platform by employing catalytic hairpin assembly (CHA) process functions as both the signal output and the signal amplification module. Two types of nucleic acids, DNA and miRNA, are chosen for demonstration.

View Article and Find Full Text PDF

Nitroxyl (HNO) plays a vital role in various biological functions and pharmacological activities, so the development of an excellent near-infrared fluorescent (NIRF) and photoacoustic (PA) dual-modality probe is crucial for understanding HNO-related physiological and pathological progression. Herein, we proposed and synthesized a novel NIRF/PA dual probe (QL-HNO) by substituting an indole with quinolinium in hemicyanine for the sensitive detection of exogenous and endogenous HNO . The designed probe showed the highest sensitivity in NIRF mode and a desirable PA signal-to-noise ratio for HNO detection and was further applied for NIRF/PA dual-modal imaging of HNO with high contrast in living cells and tumor-bearing animals.

View Article and Find Full Text PDF

We have developed a novel cancer theragnostic nanoassembly with high biocompatibility, stability and low toxicity which are activated rapidly by tumor microenvironment to realize selective fluorescence imaging, chemotherapy as well as chemoenzymatic therapy. The nanoprobes are synthesized by hybridization of fluorophore labeled hairpin DNAs containing a 5-aza-dC at hemimethylated CpG sites and pH-sensitive DNA sequence covalently conjugated with PEGylated GO. The aptamer, which is also covalently conjugated on PEGylated GO, enables to target the tumor site and the weak acid environment of tumor triggers the release of drug loaded by nanoprobes including functionalized DNA and DOXs, effectively activating fluorescence signals and selectively killing the tumor cells.

View Article and Find Full Text PDF

Aggregation induced emission (AIE) dots have gained broad attention in fluorescence bioimaging and biosensors in virtue of their distinctive optical properties of splendid biocompatibility, high brightness and good photostability. However, the application of AIE dots in sensing and imaging of enzymes in cells remains at an early stage and needs to be further explored. In this report, we proposed a novel AIE-dot-based nanoprobe for hyaluronidase (HAase) detection using a simple electrostatic self-assembly of AIE dots with gold nanoparticles functionalized using hyaluronic acid (HA-AuNPs), named HA-AuNPs@AIEDs.

View Article and Find Full Text PDF

To explore new practical means of alleviating the negative effect of heat stress on rice plants during the heading-flowering stage, a field experiment was conducted in Ji'an, Yugan, and Nanchang counties of Jiangxi Province from 2017 to 2018 with three indica hybrid rice varieties. Under ambient high temperature condition during the heading-flowering period, we sprayed five concentrations of salicylic acid (SA) (SA-SA: 100, 500, 1000, 1500, 2000 μmol·L) and five concentrations of KHPO (K-K: 7.35, 14.

View Article and Find Full Text PDF

Efficient platforms for intracellular delivery of nucleic acids are essential for biomedical imaging and gene regulation. We develop a recombinant fusion streptavidin as a novel protein scaffold for DNA nanotetrads for highly efficient nucleic acid delivery and telomerase activity imaging in living cells via cross-linking hybridization chain reaction (cHCR). The recombinant streptavidin protein is designed to fuse with multiple SV40 NLS (nuclear localization signal) and NES (nuclear export signal) domains and prepared through expression.

View Article and Find Full Text PDF

Objective: To explore the possible long-term health effects of the defoamer used in seawater desalination by sub-chronic toxicity testing.

Methods: Blood analysis, internal organ assessment, and histopathological examination were carried out in rats exposed to low, medium, and high (0.5, 1.

View Article and Find Full Text PDF

We develop a novel amplified split aptamer sensor for highly sensitive detection and imaging of small molecules in living cells by using cationic block copolymer nanoparticles (BCNs) with entrapped fluorescent conjugated polymer as a delivery agent. The design of a split aptamer as the initiator of hybridization chain reaction (HCR) affords the possibility of enhancing the signal-to-background ratio and thus allows high-contrast imaging for small molecules with relatively weak interactions with their aptamers. The novel design of using fluorescent cationic BCNs as the nanocarrier enables efficient and self-tracking transfection of DNA probes.

View Article and Find Full Text PDF

Unique physicochemical characteristics of graphitic carbon nitride (g-CN) nanosheets suit them to be a useful tool for two-photon fluorescence bioimaging. Current g-CN nanosheets based imaging probes typically use the "always-on" design strategies, which may suffer from increased fluorescence background and limited contrast. To advance corresponding applications, g-CN nanosheets based activatable two-photon fluorescence probes remain to be explored.

View Article and Find Full Text PDF

This work describes a simple and sensitive fluorescent method for detection of hydroquinone utilizing conjugated polymer nanoparticles (CPNs). The CPNs serve both as a catalyst to accelerate the conversion of hydroquinone to benzoquinone and a fluorescent probe. In the presence of hydroquinone, the fluorescence of CPNs can be effectively quenched by benzoquinone.

View Article and Find Full Text PDF

1. Herbicide atrazine (ATR) poses harmful effects on human health. The purpose of this study is to study potential biomarkers used for monitoring the toxic effects after chronic exposure to ATR by studying urine metabolites.

View Article and Find Full Text PDF

A novel isothermal nucleic acid amplification technology is developed by coupling catalytic hairpin assembly with enzymatic repairing amplification as a highly sensitive and selective platform for miRNA detection.

View Article and Find Full Text PDF

We report the development of a novel plasmon coupling enhanced Raman scattering (PCERS) method, PCERS nanobeacon, for ultrasensitive, single-step, homogeneous detection of cholera toxin (CT). This method relies on our design of the plasmonic nanoparticles, which have a bilayer phospholipid coating with embedded Raman indicators and CT-binding ligands of monosialoganglioside (GM1). This design allows a facile synthesis of the plasmonic nanoparticle via two-step self-assembly without any specific modification or chemical immobilization.

View Article and Find Full Text PDF

We developed novel activatable probe using self-assembled peptide nanowires with low affinity and toxicity to tumor cells in the absence of matrix metalloproteinase that showed activated high affinity and toxicity and provided a highly selective and efficient platform for targeted therapy and tumor imaging.

View Article and Find Full Text PDF

We have developed a novel concept for enzymatic control of plasmonic coupling as a surface enhanced Raman scattering (SERS) nanosensor for DNA demethylation. This nanosensor is constructed by decorating gold nanoparticles (AuNPs) with Raman reporters and hemimethylated DNA probes. Demethylation of DNA probes initiates a degradation reaction of the probes by methylation-sensitive endonuclease Bsh 1236I and single-strand selective exonuclease I.

View Article and Find Full Text PDF

Objective: To study whether apoptosis plays a role in controlling the number of olfactory receptor neurons, so as to reveal the specialty and mystery of neurogenesis.

Methods: Using terminal deoxynucleotidyl transferase-mediated dUTP-fluorescein nick end labeling (TUNEL) and transmission electron microscopy to detect apoptosis in olfactory mucosa of normal adult rats and damaged olfactory mucosa of 16, 32, 48 hours and 3, 7, 30 days after bulbectomy.

Results: In normal olfactory epithelium, a subpopulation of immature neurons, as well as mature neurons, showed internucleosomal DNA-fragmentation.

View Article and Find Full Text PDF