Based on the unique advantages of terahertz (THz) spectrum on the detection of energetic cocrystals, the low-temperature dependent THz spectra of CL-20/TNT cocrystal were investigated by using molecular dynamics (MD) simulations from 5 to 296 K, as well as three different crystal faces, (001), (120), and (010). When the temperature decreases below 95 K, we have observed two new peaks for CL-20/TNT cocrystal, at 4.58 and 5.
View Article and Find Full Text PDFCompared with cocrystal coformers, an explosive cocrystal has distinctive packing arrangements and complex intermolecular interactions. Identifying the spectral signatures of an explosive cocrystal and understanding the molecular low-frequency modes by means of the spectrum in the terahertz range are of great worth to the explicit mechanism of cocrystal formation. In this work, on the basis of the joint molecular dynamics (MD) simulations and solid-state density functional theory (DFT) calculations, we have investigated the terahertz (THz) absorption spectra of the CL-20/TNT cocrystal and its different directions as well as cocrystal coformers and determined the systematic and all-sided assignments of corresponding THz vibration modes.
View Article and Find Full Text PDFA molecular dynamics (MD) simulation was carried out to characterize the dynamic evolution of void defects in crystalline octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine (HMX). Different models were constructed with the same concentration of vacancies (10 %) to discuss the size effects of void. Energetic ground state properties were determined by annealing simulations.
View Article and Find Full Text PDF