Publications by authors named "Chong Fang"

Hypericin from St. John's wort has been used as a potent photosensitizer, but its working mechanism remains elusive which hinders its rational design for improved functionality. We implement ultrafast spectroscopy and quantum calculations to track the excited-state dynamics in an intricate hydrogen-bonding network of hypericin in solution.

View Article and Find Full Text PDF

Wildfire smoke has become an increasing problem due to climate change and global warming, and rapid smoke analysis is vital for the wine industry. This work demonstrates a new approach for determining volatile phenol (guaiacol) in wine via surface-enhanced Raman spectroscopy (SERS) and femtosecond stimulated Raman spectroscopy (FSRS). The results showed that several marker bands become particularly enhanced, enabling the detection of guaiacol at lower concentrations than spontaneous Raman.

View Article and Find Full Text PDF

Cyanobacterial blooms are increasingly becoming major threats to global inland aquatic ecosystems. Phycocyanin (PC), a pigment unique to cyanobacteria, can provide important reference for the study of cyanobacterial blooms warning. New satellite technology and cloud computing platforms have greatly improved research on PC, with the average number of studies examining it having increased from 5 per year before 2018 to 17 per year thereafter.

View Article and Find Full Text PDF

Climate change and human activities affect the biomass of different algal and the succession of dominant species. In the past, phytoplankton phyla inversion has been focused on oceanic and continental shelf waters, while phytoplankton phyla inversion in inland lakes and reservoirs is still in the initial and exploratory stage, and the research results are relatively few. Especially for mid-to-high latitude lakes, the research is even more blank.

View Article and Find Full Text PDF

In the present study, we demonstrated that the introduction of a 1,4-diethyl-1,2,3,4-tetrahydroquinoxalin moiety into the arylidene part of GFP chromophore-derived compounds results in the formation of environment-sensitive fluorogens. The rationally designed and synthesized compounds exhibit remarkable solvent- and pH-dependence in fluorescence intensity. The solvent-dependent variation in fluorescence quantum yield makes it possible to use some of the proposed compounds as polarity sensors suitable for selective endoplasmic reticulum fluorescent labeling in living cells.

View Article and Find Full Text PDF

Human activities have strongly impacted the global climate, and during the last few decades the global average temperature has risen at a rate faster than at any time on record. High latitude lakes in the subarctic and arctic permafrost regions have particularly been vulnerable given the "Arctic amplification" phenomenon and acceleration in warming rate in the northern hemisphere (0.2-0.

View Article and Find Full Text PDF

The electrochemical stability window of water is known to vary with the type and concentration of dissolved salts. However, the underlying influence of ions on the thermodynamic stability of aqueous solutions has not been fully understood. Here, we investigated the electrolytic behaviors of aqueous electrolytes as a function of different ions.

View Article and Find Full Text PDF

Here, four MOFs, namely Sc-TBAPy, Al-TBAPy, Y-TBAPy, and Fe-TBAPy (TBAPy: 1,3,6,8-tetrakis(p-benzoic acid)pyrene), were characterized and evaluated for their ability to remediate glyphosate (GP) from water. Among these materials, Sc-TBAPy demonstrates superior performance in both the adsorption and degradation of GP. Upon light irradiation for 5 min, Sc-TBAPy completely degrades 100% of GP in a 1.

View Article and Find Full Text PDF

Dissolved organic matter (DOM) plays a significant role in aquatic biogeochemical processes and the carbon cycle. As global climate warming continues, it is anticipated that the composition of DOM in lakes will be altered. This could have significant ecological and environmental implications, particularly in frozen ground zones.

View Article and Find Full Text PDF

Photochromic fluorescent proteins (FPs) have proved to be indispensable luminous probes for sophisticated and advanced bioimaging techniques. Among them, an interplay between photoswitching and photoconversion has only been observed in a limited subset of Kaede-like FPs that show potential for discovering the key mechanistic steps during green-to-red photoconversion. Various spectroscopic techniques including femtosecond stimulated Raman spectroscopy (FSRS), X-ray crystallography, and femtosecond transient absorption were employed on a set of five related FPs with varying photoconversion and photoswitching efficiencies.

View Article and Find Full Text PDF

The spatiotemporal variability of lake partial carbon dioxide pressure (CO) introduces uncertainty into CO flux estimates at the lake water-air interface. Knowing the variation pattern of CO is important for obtaining accurate global estimation. Here we examine seasonal and trophic variations in lake CO based on 13 field campaigns conducted in Chinese lakes from 2017 to 2021.

View Article and Find Full Text PDF

Chlorophyll-a (Chla) in inland waters is one of the most significant optical parameters of aquatic ecosystem assessment, and long-term and daily Chla concentration monitoring has the potential to facilitate in early warning of algal blooms. MOD09 products have multiple observation advantages (higher temporal, spatial resolution and signal-to-noise ratio), and play an extremely important role in the remote sensing of water color. For developing a high accuracy machine learning model of remotely estimating Chla concentration in inland waters based on MOD09 products, this study proposed an assumption that the accuracy of Chla concentration retrieval will be improved after classifying water bodies into three groups by suspended particulate matter (SPM) concentration.

View Article and Find Full Text PDF

Phosphorus is widely recognized as a nutrient that restricts growth and is the primary contributor to eutrophication in 80 % of water bodies. Consequently, the Chinese government has consistently prioritized monitoring and controlling total phosphorus (TP) levels. The remote estimation of TP in lakes and reservoirs at a national scale is a challenging task due to TP being a non-optically active parameter.

View Article and Find Full Text PDF

Red fluorescent proteins (RFPs) represent an increasingly popular class of genetically encodable bioprobes and biomarkers that can advance next-generation breakthroughs across the imaging and life sciences. Since the rational design of RFPs with improved functions or enhanced versatility requires a mechanistic understanding of their working mechanisms, while fluorescence is intrinsically an ultrafast event, a suitable toolset involving steady-state and time-resolved spectroscopic techniques has become powerful in delineating key structural features and dynamic steps which govern irreversible photoconverting or reversible photoswitching RFPs, and large Stokes shift (LSS)RFPs. The pertinent cis-trans isomerization and protonation state change of RFP chromophores in their local environments, involving key residues in protein matrices, lead to rich and complicated spectral features across multiple timescales.

View Article and Find Full Text PDF

C1 gases including CO, CO and CH, are mainly derived from terrestrial biological activities, industrial waste gas and gasification syngas. Particularly, CO and CH are two of the most important greenhouse gases contributing to climate change. Bioconversion of C1 gases is not only a promising solution to addressing the problem of waste gases emission, but also a novel route to produce fuels or chemicals.

View Article and Find Full Text PDF

In recent years, under the dual pressure of climate change and human activities, the cyanobacteria blooms in inland waters have become a threat to global aquatic ecosystems and the environment. Phycocyanin (PC), a diagnostic pigment of cyanobacteria, plays an essential role in the detection and early warning of cyanobacterial blooms. In this context, accurate estimation of PC concentration in turbid waters by remote sensing is challenging due to optical complexity and weak optical signal.

View Article and Find Full Text PDF

The versatile functions of fluorescent proteins (FPs) as fluorescence biomarkers depend on their intrinsic chromophores interacting with the protein environment. Besides X-ray crystallography, vibrational spectroscopy represents a highly valuable tool for characterizing the chromophore structure and revealing the roles of chromophore-environment interactions. In this work, we aim to benchmark the ground-state vibrational signatures of a series of FPs with emission colors spanning from green, yellow, orange, to red, as well as the solvated model chromophores for some of these FPs, using wavelength-tunable femtosecond stimulated Raman spectroscopy (FSRS) in conjunction with quantum calculations.

View Article and Find Full Text PDF

Aqueous electrolytes typically suffer from poor electrochemical stability; however, eutectic aqueous solutions-25 wt.% LiCl and 62 wt.% H PO -cooled to -78 °C exhibit a significantly widened stability window.

View Article and Find Full Text PDF

Total suspended matter (TSM) as a critical water quality parameter is closely linked with nutrients, micropollutants, and heavy metals threatening the ecological health of aquatic ecosystems. However, the long-term spatiotemporal dynamics of lake TSM in China and their response to natural and anthropogenic factors are rarely explored. In this study, based on Landsat top-of-atmosphere (TOA) reflectance embedded in GEE and in-situ TSM data collecting in the periods 2014-2020, we developed a unified empirical model (R = 0.

View Article and Find Full Text PDF

The incorporation of noncanonical amino acids (ncAAs) into fluorescent proteins is promising for red-shifting their fluorescence and benefiting tissue imaging with deep penetration and low phototoxicity. However, ncAA-based red fluorescent proteins (RFPs) have been rare. The 3-aminotyrosine modified superfolder green fluorescent protein (aY-sfGFP) represents a recent advance, yet the molecular mechanism for its red-shifted fluorescence remains elusive while its dim fluorescence hinders applications.

View Article and Find Full Text PDF

Straw return can improve crop yield as well as soil organic carbon (SOC) but may raise the possibility of NO and CH emissions. However, few studies have compared the effects of straw return on the yield, SOC, and NO emissions of various crops. Which management strategies are the best for balancing yield, SOC, and emission reduction for various crops needs to be clarified.

View Article and Find Full Text PDF

Proton transfer processes of organic molecules are key to charge transport and photoprotection in biological systems. Among them, excited-state intramolecular proton transfer (ESIPT) reactions are characterized by quick and efficient charge transfer within a molecule, resulting in ultrafast proton motions. The ESIPT-facilitated interconversion between two tautomers (PS and PA) comprising the tree fungal pigment Draconin Red in solution was investigated using a combination of targeted femtosecond transient absorption (fs-TA) and excited-state femtosecond stimulated Raman spectroscopy (ES-FSRS) measurements.

View Article and Find Full Text PDF

Fluorescent proteins (FPs) are indispensable tools for noninvasive bioimaging and sensing. Measuring the free cellular calcium (Ca) concentrations with genetically encodable FPs can be a relatively direct measure of neuronal activity due to the complex signaling role of these ions. REX-GECO1 is a recently developed red-green emission and excitation ratiometric FP-based biosensor that achieves a high dynamic range due to differences in the chromophore response to light excitation with and without calcium ions.

View Article and Find Full Text PDF

Nitrophenols are a group of small organic molecules with significant environmental implications from the atmosphere to waterways. In this work, we investigate a series of nitrophenols and nitrophenolates, with the contrasting -, -, and -substituted nitro group to the phenolic hydroxy or phenolate oxygen site (2/3/4NP or NP), implementing a suite of steady-state and time-resolved spectroscopic techniques that include UV/Visible spectroscopy, femtosecond transient absorption (fs-TA) spectroscopy with probe-dependent and global analysis, and femtosecond stimulated Raman spectroscopy (FSRS), aided by quantum calculations. The excitation-dependent (400 and 267 nm) electronic dynamics in water and methanol, for six protonated or deprotonated nitrophenol molecules (three regioisomers in each set), enable a systematic investigation of the excited-state dynamics of these functional "nanomachines" that can undergo nitro-group twisting (as a rotor), excited-state intramolecular or intermolecular proton transfer (donor-acceptor, ESIPT, or ESPT), solvation, and cooling (chromophore) events on molecular timescales.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session2ikkihnklkngsj6j97andi7iebobe5lu): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once