Background: We previously reported infectious HCV clones that contain the convenient reporters, green fluorescent protein (GFP) and Renilla luciferase (Rluc), in the NS5a-coding sequence. Although these viruses were useful in monitoring viral proliferation and screening of anti-HCV drugs, the infectivity and yield of the viruses were low.
Methodology/principal Findings: In order to obtain a highly efficient HCV cultivation system, we transfected Huh7.
Hepatitis C virus (HCV) is one of the major causative agents of virus-related hepatitis, liver cirrhosis, and hepatocellular carcinoma in humans. Translation of the HCV polyprotein is mediated by an internal ribosomal entry site (IRES) in the 5' nontranslated region of the genome. Here, we report that a cellular protein, hnRNP D, interacts with the 5' border of HCV IRES (stem-loop II) and promotes translation of HCV mRNA.
View Article and Find Full Text PDFUnlabelled: The hepatitis C virus (HCV) E2 protein has been shown to block apoptosis and has been suggested to facilitate persistent infection of the virus. Here, we report that the anti-apoptotic activity of E2 is mediated by activation of nuclear factor kappa B (NF-kappaB) that directs expression of survival gene products such as tumor necrosis factor (TNF-alpha) receptor-associated factor 2 (TRAF2), X-chromosome-linked inhibitor of apoptosis protein (XIAP), FLICE-like inhibitory protein (FLIP), and survivin. Increased levels of these proteins were observed in HCV-infected cells and a cell line producing HCV E2 protein.
View Article and Find Full Text PDFAn infectious hepatitis C virus (HCV) cDNA clone (JFH1) was generated recently. However, quantitative analysis of HCV infection and observation of infected cells have proved to be difficult because the yield of HCV in cell cultures is fairly low. We generated infectious HCV clones containing the convenient reporters green fluorescent protein (GFP) and Renilla luciferase in the NS5a-coding sequence.
View Article and Find Full Text PDFHepatitis C virus (HCV) is a positive-sense single-stranded RNA virus. NS5b is an RNA-dependent RNA polymerase that polymerizes the newly synthesized RNA. HCV likely uses host proteins for its replication, similar to other RNA viruses.
View Article and Find Full Text PDFHepatitis C virus (HCV) is the major causative agent of chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma, and can be involved in very long chronic infections up to 30 years or more. Therefore, it has been speculated that HCV possesses mechanisms capable of modulating host defense systems such as innate and adaptive immunity. To investigate this virus-host interaction, we generated HCV replicons containing various HCV structural proteins and then analyzed the sensitivity of replicon-containing cells to the apoptosis-inducing agent, TRAIL.
View Article and Find Full Text PDFTranslational initiation of hepatitis C virus (HCV) mRNA occurs by internal entry of ribosomes into an internal ribosomal entry site (IRES) at the 5' nontranslated region. A region encoding the N-terminal part of the HCV polyprotein has been shown to augment the translation of HCV mRNA. Here we show that a cellular protein, NS1-associated protein 1 (NSAP1), augments HCV mRNA translation through a specific interaction with an adenosine-rich protein-coding region within the HCV mRNA.
View Article and Find Full Text PDFHepatitis C virus (HCV) is a positive-sense RNA virus approximately 9600 bases long. An internal ribosomal entry site (IRES) spans the 5' nontranslated region, which is the most conserved and highly structured region of the HCV genome. In this study, we demonstrate that nucleotides 428-442 of the HCV core-coding sequence anneal to nucleotides 24-38 of the 5'NTR, and that this RNA-RNA interaction modulates IRES-dependent translation in rabbit reticulocyte lysate and in HepG2 cells.
View Article and Find Full Text PDFHepatitis C virus (HCV) is a positive-strand RNA virus that encodes a helicase required for viral replication. Although HCV does not replicate through a DNA intermediate, HCV helicase unwinds both RNA and DNA duplexes. An X-ray crystal structure of the HCV helicase complexed with (dU)(8) has been solved, and the substrate-amino acids interactions within the catalytic pocket were shown.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2002
Hepatitis C virus (HCV), a hepacivirus member of the Flaviviridae family, has a positive-stranded RNA genome, which consists of a single open reading frame (ORF) and nontranslated regions (NTRs) at the 5' and 3' ends. The 5'NTR was found to contain an internal ribosomal entry site (IRES), which is required for the translation of HCV mRNA. Moreover, the 5'NTR is likely to play a key role in the replication of viral RNA.
View Article and Find Full Text PDF