A novel concept of polymer railway sleeper is proposed in this study that has the potential to meet static performance requirements within the cost of hardwood timber. The existing challenges of composite sleepers, such as low performance or high cost, can be overcome using this innovative concept. Such a proclamation is proven through limit state design criteria and a series of experimentations.
View Article and Find Full Text PDFAlternative sleeper technologies have been developed to address the significant need for the replacement of deteriorating timber railway sleepers. The review of the literature indicates that the railway sleepers might fail while in service, despite passing the evaluation tests of the current composite sleeper standards which indicated that these tests do not represent in situ sleeper on ballast. In this research, a new five-point bending test is developed to evaluate the flexural behaviour of timber replacement sleeper technologies supported by ballast.
View Article and Find Full Text PDFFatigue loading is critical to fibre reinforced polymer composites due to their anisotropic and heterogenous nature. This study investigated the tensile fatigue behaviour of polyester and vinyl ester based GFRP laminates to understand the critical aspects of failure mode and fatigue life under cyclic loading. GFRP laminates with two different resin systems (polyester and vinyl ester), two different stress ratios (0.
View Article and Find Full Text PDF