An amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFTyrosine hydroxylase (TH) catalyzes the hydroxylation of L-tyrosine to L-DOPA. This is the rate-limiting step in the biosynthesis of the catecholamines - dopamine (DA), norepinephrine (NE), and epinephrine (EP). Catecholamines (CA) play a key role as neurotransmitters and hormones.
View Article and Find Full Text PDFNeurodegenerative diseases, including Alzheimer's disease and Parkinson's disease, are becoming more prevalent and an increasing burden on society. Neurodegenerative diseases often arise in the milieu of neuro-inflammation of the brain. Reactive astrocytes are key regulators in the development of neuro-inflammation.
View Article and Find Full Text PDFAlzheimer's disease is a severe neurodegenerative disease characterized by the aggregation of amyloid- peptide (A) into toxic oligomers which activate microglia and astrocytes causing acute neuroinflammation. Multiple studies show that the soluble oligomers of A42 are neurotoxic and proinflammatory, whereas the monomers and insoluble fibrils are relatively nontoxic. We show that A42 aggregation is inhibited by oil palm phenolics (OPP), an aqueous extract from the oil palm tree .
View Article and Find Full Text PDFPolyhydroxyalkanoates (PHAs), a promising family of bio-based polymers, are considered to be alternatives to traditional petroleum-based plastics. Copolymers like poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (P(HB-co-HHx)) have been shown to exhibit favorable physical and mechanical properties, due to decreased crystallinity resulting from the presence of medium-chain-length 3-hydroxyhexanoate (3HHx) monomers. In this study, we produced P(HB-co-HHx) using engineered Ralstonia eutropha strains containing deletions of the acetoacetyl-CoA reductase (phaB) genes and replacing the native PHA synthase with phaC2 from Rhodococcus aetherivorans I24 and by using butyrate, a short-chain organic acid, as the carbon source.
View Article and Find Full Text PDFPoly(3-hydroxybutyrate) (PHB) production and mobilization in Ralstonia eutropha are well studied, but in only a few instances has PHB production been explored in relation to other cellular processes. We examined the global gene expression of wild-type R. eutropha throughout the PHB cycle: growth on fructose, PHB production using fructose following ammonium depletion, and PHB utilization in the absence of exogenous carbon after ammonium was resupplied.
View Article and Find Full Text PDFReduced downstream costs, together with high purity recovery of polyhydroxyalkanoate (PHA), will accelerate the commercialization of high quality PHA-based products. In this work, a process was designed for effective recovery of the copolymer poly(hydroxybutyrate-co-hydroxyhexanoate) (P(HB-co-HHx)) containing high levels of HHx (>15 mol%) from Ralstonia eutropha biomass using non-halogenated solvents. Several non-halogenated solvents (methyl isobutyl ketone, methyl ethyl ketone, and butyl acetate and ethyl acetate) were found to effectively dissolve the polymer.
View Article and Find Full Text PDFThe potential of plant oils as sole carbon sources for production of P(3HB-co-3HHx) copolymer containing a high 3HHx monomer fraction using the recombinant Cupriavidus necator strain Re2160/pCB113 has been investigated. Various types and concentrations of plant oils were evaluated for efficient conversion of P(3HB-co-3HHx) copolymer. Crude palm kernel oil (CPKO) at a concentration of 2.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
March 2013
Lipase enzymes catalyze the reversible hydrolysis of triacylglycerol to fatty acids and glycerol at the lipid-water interface. The metabolically versatile Ralstonia eutropha strain H16 is capable of utilizing various molecules containing long carbon chains such as plant oil, organic acids, or Tween as its sole carbon source for growth. Global gene expression analysis revealed an upregulation of two putative lipase genes during growth on trioleate.
View Article and Find Full Text PDFPolyhydroxyalkanoates (PHA) are biodegradable polymers that are attractive materials for use in tissue engineering and medical device manufacturing. Ralstonia eutropha is regarded as the model organism for PHA biosynthesis. We examined the effects of PHA depolymerase (PhaZ) expression on PHA homeostasis in R.
View Article and Find Full Text PDFImproved production costs will accelerate commercialization of polyhydroxyalkanoate (PHA) polymer and PHA-based products. Plant oils are considered favorable feedstocks, due to their high carbon content and relatively low price compared to sugars and other refined carbon feedstocks. Different PHA production strategies were compared using a recombinant strain of Ralstonia eutropha that produces high amounts of P(HB-co-HHx) when grown on plant oils.
View Article and Find Full Text PDFWaste from agricultural products represents a disposal liability, which needs to be addressed. Palm oil is the most widely traded edible oil globally, and its production generates 85 million tons of aqueous by-products annually. This aqueous stream is rich in phenolic antioxidants, which were investigated for their composition and potential in vitro biological activity.
View Article and Find Full Text PDFIt is well established that plant phenolics elicit various biological activities, with positive effects on health. Palm oil production results in large volumes of aqueous by-products containing phenolics. In the present study, we describe the effects of oil palm phenolics (OPP) on several degenerative conditions using various animal models.
View Article and Find Full Text PDFThe synthesis of bacterial polyhydroxyalkanoates (PHA) is very much dependent on the expression and activity of a key enzyme, PHA synthase (PhaC). Many efforts are being pursued to enhance the activity and broaden the substrate specificity of PhaC. Here, we report the identification of a highly active wild-type PhaC belonging to the recently isolated Chromobacterium sp.
View Article and Find Full Text PDFThe polyhydroxyalkanoate (PHA) copolymer poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) [P(HB-co-HHx)] has been shown to have potential to serve as a commercial bioplastic. Synthesis of P(HB-co-HHx) from plant oil has been demonstrated with recombinant Ralstonia eutropha strains expressing heterologous PHA synthases capable of incorporating HB and HHx into the polymer. With these strains, however, short-chain-length fatty acids had to be included in the medium to generate PHA with high HHx content.
View Article and Find Full Text PDFPolyhydroxyalkanoates (PHAs) are natural polyesters synthesized by bacteria for carbon and energy storage that also have commercial potential as bioplastics. One promising class of carbon feedstocks for industrial PHA production is plant oils, due to the high carbon content of these compounds. The bacterium Ralstonia eutropha accumulates high levels of PHA and can effectively utilize plant oil.
View Article and Find Full Text PDFExtracting polyhydroxyalkanoate (PHA) polymer from bacterial cells often involves harsh conditions, including use of environmentally harmful solvents. We evaluated different detergents under various conditions to extract PHA from Ralstonia eutropha and Escherichia coli cells. Most detergents tested recovered highly pure PHA polymer from cells in amounts that depended on the percentage of polymer present in the cell.
View Article and Find Full Text PDFThe bacterium Ralstonia eutropha H16 synthesizes polyhydroxybutyrate (PHB) from acetyl coenzyme A (acetyl-CoA) through reactions catalyzed by a β-ketothiolase (PhaA), an acetoacetyl-CoA reductase (PhaB), and a polyhydroxyalkanoate synthase (PhaC). An operon of three genes encoding these enzymatic steps was discovered in R. eutropha and has been well studied.
View Article and Find Full Text PDFRalstonia eutropha H16 is capable of growth and polyhydroxyalkanoate production on plant oils and fatty acids. However, little is known about the triacylglycerol and fatty acid degradation pathways of this bacterium. We compare whole-cell gene expression levels of R.
View Article and Find Full Text PDFWe employed systematic mixture analysis to determine optimal levels of acetate, propionate, and butyrate for cell growth and polyhydroxyalkanoate (PHA) production by Ralstonia eutropha H16. Butyrate was the preferred acid for robust cell growth and high PHA production. The 3-hydroxyvalerate content in the resulting PHA depended on the proportion of propionate initially present in the growth medium.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2008
Micellization and solution properties of the aglycon triterpenoids asiatic acid (AA) and madecassic acid (MA) were examined experimentally and in computational simulations. AA and MA belong to the large class of bioactive aglycon triterpenoids, for which limited physicochemical data are available. In this study, solubility, partition coefficient, critical micelle concentrations (CMC), and surface tensions of AA and MA were measured.
View Article and Find Full Text PDFAllochromatium vinosum polyhydroxyalkanoate synthase catalyzes formation of poly-(R)-3-hydroxybutyrate (PHB) from (R)-3-hydroxybutyryl-coenzyme A (HB-CoA). (R)-3-Hydroxybutyryl-N-acetylcysteamine (HB-NAC) is an alternative substrate for this synthase in vitro, with a turnover 1% that of HB-CoA. With HB-NAC, the molecular weight (M(w)) of PHB produced at substrate-to-enzyme ratios of 1500-15 000 is approximately 75 kDa.
View Article and Find Full Text PDFWe report the successful culture of oil palm (Elaeis guineensis Jacq.) suspension cells in a bioreactor. In vitro propagation of this perennial monocotyledonous tree is an important part of the oil palm industry's approach to clonal propagation of high-yielding accessions.
View Article and Find Full Text PDF