Studies have shown that disrupting the formation of the ligand-RET-GFRα complex could be an effective way of treating pain and itch. Compared to traditional high-throughput screens, DNA encoded libraries (DELs) have distinguished themselves as a powerful technology for hit identification in recent years. The present work demonstrates the use of DEL technology identifying compound 16 as the first GFRa2/GFRa3 small molecule inhibitor (0.
View Article and Find Full Text PDFMetachromatic leukodystrophy (MLD) is a rare, genetic lysosomal storage disorder caused by the deficiency of arylsulfatase A enzyme, which results in the accumulation of sulfatide in the lysosomes of the tissues of central and peripheral nervous systems, leading to progressive demyelination and neurodegeneration. Currently there is no cure for this disease, and the only approved therapy, hematopoietic stem cell transplant, has limitations. We proposed substrate reduction therapy (SRT) as a novel approach to treat this disease, by inhibiting ceramide galactosyltransferase enzyme (UGT8).
View Article and Find Full Text PDFThe tetrameric folding of β-tryptase and the pair-wise distribution of its substrate binding sites offer a unique opportunity for development of inhibitors that span two adjacent binding sites. A series of dimeric inhibitors with two basic P1 moieties was discovered using this design strategy and exhibited tight-binder characteristics. Using the same strategy, an attempt was made to design and synthesize dimeric inhibitors with two neutral-P1 groups in hope to exploit the dimeric binding mode to achieve a starting point for further optimization.
View Article and Find Full Text PDFTropanylamide was investigated as a possible scaffold for β-tryptase inhibitors with a basic benzylamine P1 group and a substituted thiophene P4 group. Comparing to piperidinylamide, the tropanylamide scaffold is much more rigid, which presents less opportunity for the inhibitor to bind with off-target proteins, such as cytochrome P450, SSAO, and hERG potassium channel. The proposed binding mode was further confirmed by an in-house X-ray structure through co-crystallization.
View Article and Find Full Text PDFA novel β-tryptase inhibitor with a basic benzylamine P1 group, a piperidine-amide linker, and a substituted indole P4 group was discovered. A substitution at 4-indole position was introduced to constrain the conformational flexibility of the inhibitor to the bioactive conformation exhibited by X-ray structures so that entropic penalty was decreased. More importantly, this constrained conformation limited the accessibility of this molecule to anti-targets, especially SSAO, so that an enhanced metabolic profile was achieved.
View Article and Find Full Text PDFThe structures of the noncovalent complex of human factor Xa (fXa) with four non-peptide inhibitors containing a central sulfonylpiperazinone scaffold have been determined to about 2.1 A resolution. Highly potent fXa inhibitors containing both neutral groups such as chlorobenzothiophene or chlorothiophene and basic groups such as benzamidine were shown to interact in the S1 pocket through the neutral group whereas the S4 pocket is occupied by the basic moiety.
View Article and Find Full Text PDFThe discovery and SAR of ketopiperazino methylazaindole factor Xa inhibitors are described. Structure-activity data suggesting that this class of inhibitors does not bind in the canonical mode were confirmed by an X-ray crystal structure showing the neutral haloaromatic bound in the S(1) subsite. The most potent azaindole, 33 (RPR209685), is selective against related serine proteases and attains higher levels of exposure upon oral dosing than comparable benzamidines and benzamidine isosteres.
View Article and Find Full Text PDFInvolved in the coagulation cascade, factor Xa (FXa) is a serine protease which has received great interest as a potential target for the development of new antithrombotics. Although there is a great wealth of structural data on thrombin complexes, few structures of ligand/FXa complexes have been reported, presumably because of the difficulty in growing crystals. Reproducible crystallization conditions for human des-Gla1-45 coagulation FXa have been found.
View Article and Find Full Text PDFBioorg Med Chem Lett
May 2000
A focused library (4 x 14) prepared from 4-aminopyridine and 4-, 5-, and 6-azoindole templates was synthesized using 14 polymer supported 4-amido-2,3,5,6-tetrafluorophenyl (TFP) sulfonate esters inputs. Several compounds were identified as factor Xa inhibitors (IC50< or =0.1 microM) helping to establish the SAR among these four series of azarene pyrrolidinones.
View Article and Find Full Text PDFBioorg Med Chem Lett
September 1999
Thienopyridine sulfonamide pyrrolidinones were found to be potent and selective inhibitors of the coagulation cascade enzyme factor Xa. SAR studies led to several compounds that were selected for further in vivo investigation. These novel aryl binding pocket moieties represent a structural modification to a series of fXa inhibitors.
View Article and Find Full Text PDFThe design, synthesis and SAR of sulfonamidopyrrolidinone fXa inhibitors incorporating a new benzamidine isostere, namely aminoisoquinolines, is described. These inhibitors have higher Caco-2 cell permeability than comparable benzamidines and attain higher levels of exposure upon oral dosing. The most potent member 14b (fXa Ki=6 nM) is selective against other serine proteases of interest (>600 fold).
View Article and Find Full Text PDFSulfonamidopyrrolidinones were previously disclosed as a selective class of factor Xa (fXa) inhibitors, culminating in the identification of RPR120844 as a potent member with efficacy in vivo. Recognizing the usefulness of the central pyrrolidinone template for the presentation of ligands to the S-1 and S-4 subsites of fXa, studies to optimize the P-1 and P-4 groups were initiated. Sulfonamidopyrrolidinones containing 4-hydroxy- and 4-aminobenzamidines were discovered to be effective inhibitors of fXa.
View Article and Find Full Text PDFThe discovery of a series of non-peptide factor Xa (FXa) inhibitors incorporating 3-(S)-amino-2-pyrrolidinone as a central template is described. After identifying compound 4, improvements in in vitro potency involved modifications of the liphophilic group and optimizing the angle of presentation of the amidine group to the S1 pocket of FXa. These studies ultimately led to compound RPR120844, a potent inhibitor of FXa (K(i) = 7 nM) which shows selectivity for FXa over trypsin, thrombin, and several fibrinolytic serine proteinases.
View Article and Find Full Text PDF