By employing Data Envelopment Analysis (DEA) with Slacks-Based Measure (SBM) and DEA-Undesirable Output models, this study aims to investigate the operational and environmental efficiency of 26 major ports across China's Special Economic Zones (SEZs). Focusing on the interplay between operation performance and environmental sustainability, this research evaluates how well these ports manage their operational activities while minimizing their environmental impact. The results indicate that the ports in the Yangtze River Delta, Pearl River Delta, and Southwest Coast significantly outperform others.
View Article and Find Full Text PDFObjective: Osteoarthritis (OA) is a degenerative joint disease caused by the breakdown of joint cartilage and adjacent bone. Joint injury, being overweight, differences in leg length, high levels of joint stress, abnormal joint or limb development, and inherited factors have been implicated in the etiology of OA. In addition to physical damage to the joint, a role for inflammatory processes has been identified as well.
View Article and Find Full Text PDFPressure-sensitive adhesives are widely utilized due to their instant and reversible adhesion to various dry substrates. Though offering intuitive and robust attachment of medical devices on skin, currently available clinical pressure-sensitive adhesives do not attach to internal organs, mainly due to the presence of interfacial water on the tissue surface that acts as a barrier to adhesion. In this work, a pressure-sensitive, repositionable bioadhesive (PSB) that adheres to internal organs by synergistically combining the characteristic viscoelastic properties of pressure-sensitive adhesives and the interfacial behavior of hydrogel bioadhesives, is introduced.
View Article and Find Full Text PDFIn drug discovery, human organ-on-a-chip (organ chip) technology has emerged as an essential tool for preclinical testing, offering a realistic representation of human physiology, real-time monitoring, and disease modeling. Polydimethylsiloxane (PDMS) is commonly used in organ chip fabrication owing to its biocompatibility, flexibility, transparency, and ability to replicate features down to the nanoscale. However, the porous nature of PDMS leads to unintended absorption of small molecules, critically affecting the drug response analysis.
View Article and Find Full Text PDFOrgan-on-a-chip, which recapitulates the dynamics of vasculature, has emerged as a promising platform for studying organ-specific vascular beds. However, its practical advantages in identifying vascular-targeted drug delivery systems (DDS) over traditional models remain underexplored. This study demonstrates the reliability and efficacy of the organ-on-a-chip in screening efficient DDS by comparing its performance with that of a conventional transwell, both designed to simulate the blood-brain barrier (BBB).
View Article and Find Full Text PDFBackground: MicroRNA (miRNA)-21-5p participates in various biological processes, including cancer and autoimmune diseases. However, its role in the development of fibrosis in the in vivo model of systemic sclerosis (SSc) has not been reported. This study investigated the effects of miRNA-21a-5p overexpression and inhibition on SSc fibrosis using a bleomycin-induced SSc mouse model.
View Article and Find Full Text PDFPhospholipase D1 (PLD1), which catalyzes the hydrolysis of phosphatidylcholine to phosphatidic acid and choline, plays multiple roles in inflammation. We investigated the therapeutic effects of the newly developed PLD1 inhibitors A2998, A3000, and A3773 in vitro and in vivo rheumatoid arthritis (RA) model. A3373 reduced the levels of LPS-induced TNF-α, IL-6, and IgG in murine splenocytes in vitro.
View Article and Find Full Text PDFNanofiber (NF) membranes have been highlighted as functional materials for biomedical applications owing to their high surface-to-volume ratios, high permeabilities, and extracellular matrix-like biomimetic structures. Because many platforms for biomedical applications are made of thermoplastic polymers (TP), a simple and leak-free method for bonding NF membranes onto TP platforms is essential. Here, we propose a facile but leak-free localized thermal bonding method for integrating 2D or 3D-structured NF membrane onto a TP supporting substrate while preserving the pristine nanofibrous structure of the membrane, based on localized preheating of the substrate.
View Article and Find Full Text PDFBlood-brain barrier (BBB) remains one of the critical challenges in developing neurological therapeutics. Short single-stranded DNA/RNA nucleotides forming a three-dimensional structure, called aptamers, have received increasing attention as BBB shuttles for efficient brain drug delivery owing to their practical advantages over Trojan horse antibodies or peptides. Aptamers are typically obtained by combinatorial chemical technology, termed Systemic Evolution of Ligands by EXponential Enrichment (SELEX), against purified targets, living cells, or animal models.
View Article and Find Full Text PDFGardeniae Fructus (GF, the dried ripe fruits of Gardenia jasminoides Ellis) has traditionally been used to treat various diseases in East Asian countries, such as liver disease. Silymarin is a well-known medicine used to treat numerous liver diseases globally. The present study was purposed to evaluate the synergistic effects of GF and silymarin on the thioacetamide (TAA)-induced liver fibrosis of a mouse model.
View Article and Find Full Text PDFObesity is a medical term used to describe an over-accumulation of adipose tissue. It causes abnormal physiological and pathological processes in the body. Obesity is associated with systemic inflammation and abnormalities in immune cell function.
View Article and Find Full Text PDFBackground: Osteoarthritis (OA) is the most common type of degenerative arthritis and affects the entire joint, causing pain, joint inflammation, and cartilage damage. Various risk factors are implicated in causing OA, and in recent years, a lot of research and interest have been directed toward chronic low-grade inflammation in OA. Monocyte chemoattractant protein-1 (MCP-1; also called CCL2) acts through C-C chemokine receptor type 2 (CCR2) in monocytes and is a chemotactic factor of monocytes that plays an important role in the initiation of inflammation.
View Article and Find Full Text PDFSjögren syndrome (SS) is an autoimmune disease in which immune cells infiltrate the exocrine gland. Since SS is caused by a disorder of the immune system, treatments should regulate the immune response. Sphingosylphosphorylcholine (SPC) is a sphingolipid that mediates cellular signaling.
View Article and Find Full Text PDFObjective: CR6-interacting factor 1 (CRIF1) is a nuclear transcriptional regulator and a mitochondrial inner membrane protein; however, its functions in B lymphocytes have been poorly defined. This study was undertaken to investigate the effects of CRIF1 on B cell metabolic regulation, cell function, and autoimmune diseases.
Methods: Using mice with B cell-specific deletion of CRIF1 (Crif1 mice), we assessed the relevance of CRIF1 function for lupus disease parameters, including anti-double-stranded DNA (anti-dsDNA), cytokines, and kidney pathology.
The purpose of this study is to explore the impact of constraining class-specific residual variances to be equal by examining and comparing the parameter estimation of a free model and a constrained model under various conditions. A Monte Carlo simulation study was conducted under several conditions, including the number of predictors, class-specific intercepts, sample size, class-specific regression weights, and class proportion to evaluate the results for parameter estimation of the free model and the restricted model. The free model yielded a more accurate estimation than the restricted model for most of the conditions, but the accuracy of the free model estimation was impacted by the number of predictors, sample size, the disparity in the magnitude of class-specific slopes and intercepts, and class proportion.
View Article and Find Full Text PDFBackground: Rheumatoid arthritis (RA) is a progressive systemic autoimmune disease that is characterized by infiltration of inflammatory cells into the hyperplastic synovial tissue, resulting in subsequent destruction of adjacent articular cartilage and bone. Methotrexate (MTX), the first conventional disease-modifying antirheumatic drug (DMARD), could alleviate articular damage in RA and is implicated in humoral and cellular immune responses. However, MTX has several side effects, so efficient delivery of low-dose MTX is important.
View Article and Find Full Text PDFPurpose: Spondyloarthritis (SpA) is a systemic inflammatory arthritis mediated mainly by interleukin (IL)-17. The vitronectin-derived bioactive peptide, VnP-16, exerts an anti-osteoporotic effect via β1 and αvβ3 integrin signaling. SpA is associated with an increased risk of osteoporosis, and we investigated the effect of VnP-16 in mice with SpA.
View Article and Find Full Text PDFObjective: Tacrolimus (Tac) is an immunosuppressant used in the treatment of systemic lupus erythematosus (SLE); however, it induces T cell subset imbalances by reducing regulatory T (Treg) cells. (LA) is reported to have therapeutic efficacy in immune-mediated diseases T cell regulation.
Methods: This study investigated whether a combination therapy of LA and Tac improves the therapeutic efficacy of Tac by modulating T cell subset populations in an animal model of SLE.
The potential therapeutic effects of probiotic bacteria in rheumatoid arthritis (RA) remain controversial. Thus, this study aimed to discover potential therapeutic bacteria based on the relationship between the gut microbiome and rheumatoid factor (RF) in RA. Bacterial genomic DNA was extracted from the fecal samples of 93 RA patients and 16 healthy subjects.
View Article and Find Full Text PDFPrevious studies have evaluated the roles of T and B cells in the pathogenesis of Sjögren's syndrome (SS); however, their relationships with age-dependent and metabolic abnormalities remain unclear. We examined the impacts of changes associated with aging or metabolic abnormalities on populations of T and B cells and SS disease severity. We detected increased populations of IL-17-producing T and B cells, which regulate inflammation, in the salivary glands of NOD/ShiLtJ mice.
View Article and Find Full Text PDFThe properties of a semipermeable porous membrane, including pore size, pore density, and thickness, play a crucial role in creating a tissue interface in a microphysiological system (MPS) because it dictates multicellular interactions between different compartments. The small pore-sized membrane has been preferentially used in an MPS for stable cell adhesion and the formation of tissue barriers on the membrane. However, it limited the applicability of the MPS because of the hindered cell transmigration via sparse through-holes and the optical translucence caused by light scattering through pores.
View Article and Find Full Text PDFWe conducted a meta-analysis exploring the effect of a low fermentable oligo-, di-, monosaccharides, and polyols diet (LFD) on the overall symptoms, quality of life, and stool habits of irritable bowel syndrome (IBS) patients. The meta-analysis was performed using a random-effects method. The effect size was presented as weighted standardized mean difference (SMD) and 95% confidence interval (CI).
View Article and Find Full Text PDFSmall heterodimer partner interacting leucine zipper protein (SMILE) is an orphan nuclear receptor and a member of the bZIP family of proteins. We investigated the mechanism by which SMILE suppressed the development of inflammatory bowel disease (IBD) using a DSS-induced colitis mouse model and peripheral blood mononuclear cells (PBMCs) from patients with ulcerative colitis (UC). Metformin, an antidiabetic drug and an inducer of AMPK, upregulated the level of SMILE in human intestinal epithelial cells and the number of SMILE-expressing cells in colon tissues from DSS-induced colitis mice compared to control mice.
View Article and Find Full Text PDFIt is known that one of the main concerns associated with the conventional welding of precipitation-strengthened Al alloys is the formation of softening regions, resulting in the deterioration of mechanical properties. In this study, we show that linear friction welding (LFW) can completely suppress softening regions in precipitation-strengthened AA6061-T6 alloy by introducing a large shear strain and by controlling the interfacial temperature. We found that the LFW process resulted in an extremely low interfacial temperature; it decreased as the applied pressure increased from 50 to 240 MPa.
View Article and Find Full Text PDF