Publications by authors named "Cho-Jui Hsieh"

Discrimination-aware classification methods remedy socioeconomic disparities exacerbated by machine learning systems. In this paper, we propose a novel data pre-processing technique that assigns weights to training instances in order to reduce discrimination without changing any of the inputs or labels. While the existing reweighing approach only looks into sensitive attributes, we refine the weights by utilizing both sensitive and insensitive ones.

View Article and Find Full Text PDF

Mesenchymal stromal cells (MSCs) offer promising potential in biomedical research, clinical therapeutics, and immunomodulatory therapies due to their ease of isolation and multipotent, immunoprivileged, and immunosuppersive properties. Extensive efforts have focused on optimizing the cell isolation and culture methods to generate scalable, therapeutically-relevant MSCs for clinical applications. However, MSC-based therapies are often hindered by cell heterogeneity and inconsistency of therapeutic function caused, in part, by MSC senescence.

View Article and Find Full Text PDF

Trust region (TR) and adaptive regularization using cubics (ARC) have proven to have some very appealing theoretical properties for nonconvex optimization by concurrently computing function value, gradient, and Hessian matrix to obtain the next search direction and the adjusted parameters. Although stochastic approximations help largely reduce the computational cost, it is challenging to theoretically guarantee the convergence rate. In this article, we explore a family of stochastic TR (STR) and stochastic ARC (SARC) methods that can simultaneously provide inexact computations of the Hessian matrix, gradient, and function values.

View Article and Find Full Text PDF

Artificial intelligence (AI) image translation has been a valuable tool for processing image data in biological and medical research. To apply such a tool in mission-critical applications, including drug screening, toxicity study, and clinical diagnostics, it is essential to ensure that the AI prediction is trustworthy. Here, we demonstrate that an ensemble learning method can quantify the uncertainty of AI image translation.

View Article and Find Full Text PDF

Recently, video-based action recognition methods using convolutional neural networks (CNNs) achieve remarkable recognition performance. However, there is still lack of understanding about the generalization mechanism of action recognition models. In this paper, we suggest that action recognition models rely on the motion information less than expected, and thus they are robust to randomization of frame orders.

View Article and Find Full Text PDF

The mechanical properties of tissues have profound impacts on a wide range of biological processes such as embryo development (1,2), wound healing (3-6), and disease progression (7). Specifically, the spatially varying moduli of cells largely influence the local tissue deformation and intercellular interaction. Despite the importance of characterizing such a heterogeneous mechanical property, it has remained difficult to measure the supracellular modulus field in live cell layers with a high-throughput and minimal perturbation.

View Article and Find Full Text PDF

We consider composition problems of the form (1/n)∑ F (1/m)∑ G(x) , which are important for machine learning. Although gradient descent and stochastic gradient descent are straightforward solutions, the essential computation of G (x) = (1/m)∑G(x) in each single iteration is expensive, let alone for large m . In this article, we devise a stochastically controlled compositional gradient algorithm.

View Article and Find Full Text PDF

Mesenchymal stromal cells (MSCs) are multipotent cells that have great potential for regenerative medicine, tissue repair, and immunotherapy. Unfortunately, the outcomes of MSC-based research and therapies can be highly inconsistent and difficult to reproduce, largely due to the inherently significant heterogeneity in MSCs, which has not been well investigated. To quantify cell heterogeneity, a standard approach is to measure marker expression on the protein level via immunochemistry assays.

View Article and Find Full Text PDF

In this article, we propose a novel model-parallel learning method, called local critic training, which trains neural networks using additional modules called local critic networks. The main network is divided into several layer groups, and each layer group is updated through error gradients estimated by the corresponding local critic network. We show that the proposed approach successfully decouples the update process of the layer groups for both convolutional neural networks (CNNs) and recurrent neural networks (RNNs).

View Article and Find Full Text PDF

Convolutional neural networks (CNNs) are widely used to recognize the user's state through electroencephalography (EEG) signals. In the previous studies, the EEG signals are usually fed into the CNNs in the form of high-dimensional raw data. However, this approach makes it difficult to exploit the brain connectivity information that can be effective in describing the functional brain network and estimating the perceptual state of the user.

View Article and Find Full Text PDF

Synopsis of recent research by authors named "Cho-Jui Hsieh"

  • Cho-Jui Hsieh's recent research primarily focuses on leveraging artificial intelligence and machine learning to address challenges in biomedical applications, enhance classification methods, and optimize stochastic optimization techniques.
  • His work includes developing refined reweighing techniques for non-discriminatory classification, enabling the reduction of socioeconomic disparities in machine learning systems.
  • Additionally, he explores the characterization of stem cell heterogeneity using AI methods and the robustness of action recognition models against adversarial attacks, enhancing both practical applications and theoretical understanding in these fields.