A 2D approach was studied for the design of polymer-based molecular barcodes. Uniform oligo(alkoxyamine amide)s, containing a monomer-coded binary message, were synthesized by orthogonal solid-phase chemistry. Sets of oligomers with different chain-lengths were prepared.
View Article and Find Full Text PDFRationale: Digitally encoded oligomers composed of two distinct amide coding units spaced by a nitroxide moiety were recently decrypted using a tandem mass spectrometry (MS/MS) sequencing approach developed for protonated oligomers. Here, the MS/MS behavior of deprotonated oligomers was explored in the negative ion mode to provide both structural and mechanistic complementary information.
Methods: Binary-encoded oligo(alkoxyamine)amides, containing coding 0/1 amide units spaced by a TEMPO nitroxide moiety, were ionized in negative ion mode electrospray thanks to their α end-group containing a carboxylic acid function.
Chem Commun (Camb)
November 2015
Binary-encoded poly(alkoxyamine amide)s were prepared by oligomer ligation. These polymers contain digital sequences based on two monomers defined as 0 and 1 bits. A library of oligomers containing all possible dyads 00, 01, 10 and 11 was prepared and used to construct long coded sequences.
View Article and Find Full Text PDFBiopolymers such as DNA store information in their chains using controlled sequences of monomers. Here we describe a non-natural information-containing macromolecule that can store and retrieve digital information. Monodisperse sequence-encoded poly(alkoxyamine amide)s were synthesized using an iterative strategy employing two chemoselective steps: the reaction of a primary amine with an acid anhydride and the radical coupling of a carbon-centred radical with a nitroxide.
View Article and Find Full Text PDF