Controlled payload release is one of the key elements in the creation of a reliable drug delivery system. We report the discovery of a drug delivery vessel able to transport chemotherapeutic agents to target cancer cells and selectively trigger their release using the electrochemical activity of a ferrocene-modified phospholipid. Supported by in vitro assays, the competitive advantages of this discovery are (i) the simple one step scalability of the synthetic process, (ii) the stable encapsulation of toxic drugs (doxorubicin) during transport, and (iii) the selective redox triggering of the liposomes to harness their cytotoxic payload at the cancer site.
View Article and Find Full Text PDFWe present a review of natural product syntheses accomplished in our laboratory during the last 5 years. Each synthetic route features a phenol dearomatization promoted by an environmentally benign hypervalent iodine reagent. The dearomatizations demonstrate the "aromatic ring umpolung" concept, and involve stereoselective remodeling of the inert unsaturations of a phenol into a highly functionalized key intermediate that may contain a quaternary carbon center and a prochiral dienone system.
View Article and Find Full Text PDFA concise synthesis of erysotramidine (an alkaloid belonging to the erythrina family) was achieved starting with an inexpensive phenol and amine derivative. The synthesis is based on oxidative phenol dearomatizations mediated by a hypervalent iodine reagent and includes a novel route to a key indolinone moiety.
View Article and Find Full Text PDF