Publications by authors named "Chloe Gray"

Granular activated carbon (GAC) and ion exchange resin (IXR) are widely used as adsorbents to remove PFAS from drinking water sources and effluent waste streams. However, the high cost associated with GAC and IXR generation has motivated the development of less expensive adsorbents for treatment of PFAS-impacted water. Thus, the objective of this research was to create an economically viable and sustainable PFAS adsorbent from sewage sludge.

View Article and Find Full Text PDF

The prevention of musculoskeletal injuries and their related welfare and economic impacts represent an immediate priority for the horse racing industry. This prospective pilot study aimed to evaluate a method to quantitatively analyze scintigraphic features of specific anatomical regions of the horse's appendicular skeleton in combination with secondary measures of musculoskeletal metabolism in blood. Twelve horses referred for scintigraphic assessment of lameness were enrolled.

View Article and Find Full Text PDF

The adsorption of serum proteins on the surface of nanoparticles (NPs) delivered into a biological environment has been known to alter NP surface properties and consequently their targeting efficiency. In this paper, we use random copolymer (p(HEMA- ran-GMA))-based NPs synthesized using 2-hydroxyethyl methacrylate (HEMA) and glycidyl methacrylate (GMA). We show that serum proteins bind to the NP and that functionalization with antibodies and peptides designed to facilitate NP passage across the blood-brain barrier (BBB) to bind specific cell types is ineffective.

View Article and Find Full Text PDF

Following injury to the central nervous system, secondary degeneration is mediated by Ca2+ imbalances and overproduction of reactive oxygen species from mitochondria, and is associated with myelin deficits and loss of function. Preventing intracellular Ca2+ influx at the acute phase of injury is a potential strategy for limiting these deficits and preserving function. The use of single ion channel inhibitors has had little success in attenuating morphological and functional deficits, potentially due to the many pathways by which calcium can traverse the cell membrane.

View Article and Find Full Text PDF