Publications by authors named "Chloe Emerson"

Background: University spring break carries a two-pronged SARS-CoV-2 variant transmission risk. Circulating variants from universities can spread to spring break destinations, and variants from spring break destinations can spread to universities and surrounding communities. Therefore, it is critical to implement SARS-CoV-2 variant surveillance and testing strategies to limit community spread before and after spring break to mitigate virus transmission and facilitate universities safely returning to in-person teaching.

View Article and Find Full Text PDF

Programmed cell death is a common feature of animal development. During development of the hermaphrodite, programmed cell death (PCD) removes 131 cells from stereotyped positions in the cell lineage, mostly in neuronal lineages. Blocking cell death results in supernumerary "undead" neurons.

View Article and Find Full Text PDF

Although the majority of -mutant melanomas respond to BRAF/MEK inhibitors, these agents are not typically curative. Moreover, they are largely ineffective in - and -mutant tumors. Here we report that genetic and chemical suppression of HDAC3 potently cooperates with MAPK pathway inhibitors in all three RAS pathway-driven tumors.

View Article and Find Full Text PDF

Although agents that inhibit specific oncogenic kinases have been successful in a subset of cancers, there are currently few treatment options for malignancies that lack a targetable oncogenic driver. Nevertheless, during tumor evolution cancers engage a variety of protective pathways, which may provide alternative actionable dependencies. Here, we identify a promising combination therapy that kills -mutant tumors by triggering catastrophic oxidative stress.

View Article and Find Full Text PDF

Increasing atmospheric carbon dioxide (CO) has resulted in a change in seawater chemistry and lowering of pH, referred to as ocean acidification. Understanding how different organisms and processes respond to ocean acidification is vital to predict how marine ecosystems will be altered under future scenarios of continued environmental change. Regenerative processes involving biomineralization in marine calcifiers such as sea urchins are predicted to be especially vulnerable.

View Article and Find Full Text PDF

Echinoderms represent a phylum with exceptional regenerative capabilities that can reconstruct both external appendages and internal organs. Mechanistic understanding of the cellular pathways involved in regeneration in these animals has been hampered by the limited genomic tools and limited ability to manipulate regenerative processes. We present a functional assay to investigate mechanisms of tissue regeneration and biomineralization by measuring the regrowth of amputated tube feet (sensory and motor appendages) and spines in the sea urchin, Lytechinus variegatus.

View Article and Find Full Text PDF