Macrophages contribute to the induction and resolution of inflammation and play a central role in chronic low-grade inflammation in cardiovascular diseases caused by atherosclerosis. Human milk oligosaccharides (HMOs) are complex unconjugated glycans unique to human milk that benefit infant health and act as innate immune modulators. Here, we identify the HMO 3'sialyllactose (3'SL) as a natural inhibitor of TLR4-induced low-grade inflammation in macrophages and endothelium.
View Article and Find Full Text PDFManipulation of the gut microbiome using live biotherapeutic products shows promise for clinical applications but remains challenging to achieve. Here, we induced dysbiosis in 56 healthy volunteers using antibiotics to test a synbiotic comprising the infant gut microbe, Bifidobacterium longum subspecies infantis (B. infantis), and human milk oligosaccharides (HMOs).
View Article and Find Full Text PDFPredictable and sustainable engraftment of live biotherapeutic products into the human gut microbiome is being explored as a promising way to modulate the human gut microbiome. We utilize a synbiotic approach pairing the infant gut microbe Bifidobacterium longum subspecies infantis (B. infantis) and human milk oligosaccharides (HMO).
View Article and Find Full Text PDFNeonatal rotavirus infections are predominantly asymptomatic. While an association with gastrointestinal symptoms has been described in some settings, factors influencing differences in clinical presentation are not well understood. Using multidisciplinary approaches, we show that a complex interplay between human milk oligosaccharides (HMOs), milk microbiome, and infant gut microbiome impacts neonatal rotavirus infections.
View Article and Find Full Text PDFNecrotizing enterocolitis (NEC) is one of the most common and devastating intestinal disorders in preterm infants. Therapies to meet the clinical needs for this special and highly vulnerable population are extremely limited. A specific human milk oligosaccharide (HMO), disialyllacto-N-tetraose (DSLNT), was shown to contribute to the beneficial effects of breastfeeding as it prevented NEC in a neonatal rat model and was associated with lower NEC risk in a human clinical cohort study.
View Article and Find Full Text PDF(group B , GBS) is a leading cause of invasive bacterial infections in newborns, typically acquired vertically during childbirth secondary to maternal vaginal colonization. Human milk oligosaccharides (HMOs) have important nutritional and biological activities that guide the development of the immune system of the infant and shape the composition of normal gut microbiota. In this manner, HMOs help protect against pathogen colonization and reduce the risk of infection.
View Article and Find Full Text PDFObjective: Necrotising enterocolitis (NEC) is one of the most common and often fatal intestinal disorders in preterm infants. Markers to identify at-risk infants as well as therapies to prevent and treat NEC are limited and urgently needed. NEC incidence is significantly lower in breast-fed compared with formula-fed infants.
View Article and Find Full Text PDFJ Allergy Clin Immunol
February 2017
Human milk oligosaccharides (HMOs) provide a main substrate to help shape the infant's gut microbiota and affect the maturation of the intestinal mucosal immune system. In our cohort, infants that received human milk with low Lacto-N-fucopentaose (LNFP) III concentrations (< 60μM) were more likely to become affected with cow's milk allergy when compared to high LNFP III-containing milk (odds ratio 6.7, 95% CI 2.
View Article and Find Full Text PDFNecrotising enterocolitis (NEC) is one of the most frequent and fatal intestinal disorders in preterm infants and has very limited treatment options. Breast-fed infants are at a 6-10-fold lower NEC risk than formula-fed infants, and we have previously shown that human milk oligosaccharides (HMO) improved survival and reduced pathology in a rat NEC model. The HMO disialyllacto-N-tetraose (DSLNT) was most effective, and sialylation was shown to be essential for its protective effect.
View Article and Find Full Text PDFThe heavy burden of maternal HIV infection has resulted in a high prevalence of premature birth and associated necrotizing enterocolitis (NEC). Human milk oligosaccharides (HMOs) were recently associated with HIV infection and transmission through breastfeeding and were also shown to reduce NEC in an animal model, particularly the HMO disialyllacto-N-tetraose (DSLNT). The primary aim of this study was to verify differences in HMO composition between HIV-infected and HIV-uninfected women.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
June 2014
Two novel synthetic α2-6-linked disialyl hexasaccharides, disialyllacto-N-neotetraose (DSLNnT) and α2-6-linked disialyllacto-N-tetraose (DS'LNT), were readily obtained by highly efficient one-pot multienzyme (OPME) reactions. The sequential OPME systems described herein allowed the use of an inexpensive disaccharide and simple monosaccharides to synthesize the desired complex oligosaccharides with high efficiency and selectivity. DSLNnT and DS'LNT were shown to protect neonatal rats from necrotizing enterocolitis (NEC) and are good therapeutic candidates for preclinical experiments and clinical application in treating NEC in preterm infants.
View Article and Find Full Text PDFBreast-feeding reduces the risk of enteric bacterial infections in newborns in part because of human milk oligosaccharides (HMOs), complex glycans that are present in human milk, but not in infant formula. Enteropathogenic Escherichia coli (EPEC) are attaching/effacing pathogens that cause serious diarrheal illness with potentially high mortality in infants. We isolated HMOs from pooled human milk and found that they significantly reduce EPEC attachment to cultured epithelial cells.
View Article and Find Full Text PDFThe invasive pathogen uropathogenic Escherichia coli (UPEC) is the primary cause of urinary tract infections (UTIs). Recurrent infection that can progress to life-threatening renal failure has remained as a serious global health concern in infants. UPEC adheres to and invades bladder epithelial cells to establish infection.
View Article and Find Full Text PDF