The mechanism by which dopaminergic neurons are selectively affected in Parkinson's disease is not fully understood. In this study, we found a dramatic increase in the expression of catechol-O-methyltransferase (COMT), along with a lower level of DNA methylation, in induced pluripotent stem cell-derived dopaminergic neurons from patients with parkin (PARK2) gene mutations compared to those from healthy controls. In addition, a significant increase in the expression of COMT was found in dopaminergic neurons of isogenic PARK2 induced pluripotent stem cell lines that mimicked loss of function of PARK2 by CRISPR Cas9 technology.
View Article and Find Full Text PDFGlioblastoma exhibits phenotypic and genetic heterogeneity, aggressive invasiveness, therapeutic resistance, and tumor recurrence, which can be explained by the existence of glioma stem cells (GSCs). In this study, we visualized the spatiotemporal dynamics of invasion of human GSCs in an orthotopic xenograft mouse model using time-lapse imaging of organotypic brain slice cultures and three-dimensional imaging of optically cleared whole brains. GSCs implanted in the striatum exhibited directional migration toward axon bundles, perivascular area, and the subventricular zone around the inferior horn of the lateral ventricle.
View Article and Find Full Text PDFSomatostatin reduces neuronal excitability via somatostatin receptors (Sst-Sst) and inhibits seizure activity. However, the expression status of the Sst subtypes in epileptic mice and their role in the antiepileptic effects of somatostatin remain unclear. Here, we show that the Sst subtypes are regulated differently by epileptic neuronal activity in mice.
View Article and Find Full Text PDFParkinson's disease (PD) is associated with both motor and non-motor symptoms, including constipation, sensory neuropathy, depression, dementia and sleep disorder. Somatostatin (SST) is considered to be a modulator of GABAergic inhibitory transmission, and its levels are reduced in cerebrospinal fluid of PD patients. In the present study, we evaluated the changes in the expression of SST in GABAergic neurons derived from induced pluripotent stem cells (iPSCs) of PD patients.
View Article and Find Full Text PDFGhrelin exerts a wide range of physiological actions throughout the body and appears to be a promising target for disease therapy. Endogenous ghrelin receptors (GHSRs) are present in extrahypothalamic sites including the substantia nigra pars compacta (SNc), which is related to phenotypic dysregulation or frank degeneration in Parkinson's disease (PD). Here we found a dramatic decrease in the expression of GHSR in PD-specific induced pluripotent stem cell (iPSC)-derived dopaminergic (DAnergic) neurons generated from patients carrying parkin gene (PARK2) mutations compared to those from healthy controls.
View Article and Find Full Text PDFBackground: The EGFR tyrosine kinase inhibitor gefitinib is used in therapy for non-small-cell lung cancer (NSCLC). However, its application is limited by resistance-accelerated disease progression, which is accompanied by the epithelial-to-mesenchymal transition (EMT). In the present study, we performed multiple expression analyses of microRNAs (miRNAs) and quantified the expression of several related EMT players in gefitinib-resistant NSCLC cells.
View Article and Find Full Text PDF