Publications by authors named "Chizumi Nomura-Furuwatari"

The promotion of osteoblastic differentiation by bone morphogenetic proteins (BMPs) is accelerated by chemical compounds that increase the intracellular concentration of cyclic 3',5'-adenosine monophosphate (cAMP). cAMP is synthesized from adenosine triphosphate (ATP) by adenyl cyclase and degraded by phosphodiesterase (PDE) family enzymes. Inhibition of PDEs leads to prolonged accumulation of cAMP within cells and Camp-mediated reactions.

View Article and Find Full Text PDF

Bone morphogenetic proteins (BMPs) belong to the transforming growth factor (TGF)-beta superfamily, and some display potent osteogenic activity both in vivo and in vitro. The BMP signaling cascade involving BMP receptors at the cell membrane and intracellular messengers (Smads) has been elucidated, but the regulatory mechanisms of BMP signaling have not been clarified. We previously found that pentoxifyline (PeTx), a nonspecific inhibitor of phosphodiesterase (PDE), and rolipram, a PDE-4-specific inhibitor, enhance BMP-4-induced osteogenic differentiation of mesenchymal cells, probably through the elevation of intracellular cyclic adenosine monophosphate (cAMP) accumulation and modulation of BMP signaling pathways as enhanced BMP-4 action was reproduced by addition of dibutylyl-cAMP (dbcAMP).

View Article and Find Full Text PDF

Unlabelled: Hepatocyte growth factor (HGF) is activated and the expression of BMP receptors (BMPRs) is induced around the fracture site during the early phase of fracture repair. HGF facilitates the expression of BMPRs in mesenchymal cells. This study suggests that HGF contributes to fracture repair by inducing the expression of BMPRs.

View Article and Find Full Text PDF