Publications by authors named "Chizuko Ishihara"

In order to relieve pain due to oral mucositis, we attempted to develop mucoadhesive microparticles containing indomethacin (IM) and gel preparations with IM microparticles that can be applied to the oral cavity. The mucoadhesive microparticles were prepared with a simple composition consisting of IM and polyvinyl alcohol (PVA). Two kinds of PVA with different block properties were used, and microparticles were prepared by heating-filtration and mixing-drying.

View Article and Find Full Text PDF

Emulsions for oral delivery are not suitable for sustained drug absorption because such preparations diffuse rapidly in the gastrointestinal (GI) tract after oral administration. In order to generate sustained drug absorption and increase oral bioavailability, various polymers were added to a morin (MO) nanoemulsion to improve retention in the GI tract and alter the surface properties of oil droplets in the nanoemulsion. The influence of these polymers on the formulation properties was investigated.

View Article and Find Full Text PDF

The aim of the present study was to investigate the influence of polysorbate 60 (Tween 60) on the development of morin-loaded nanoemulsions to improve the oral bioavailability of morin. Nanoemulsions were prepared using Tween 60 and polyvinyl alcohol (PVA) as emulsifiers, and medium chain triglycerides (MCT) as the lipid base. Low-saponification-degree PVA (LL-810) was also added to stabilize dispersed droplets.

View Article and Find Full Text PDF

The purpose of the present work was to evaluate polyvinyl alcohols (PVAs) as a mucoadhesive polymer for mucoadhesive buccal tablets prepared by direct compression. Various polymerization degree and particle diameter PVAs were investigated for their usability. The tensile strength, in vitro adhesive force, and water absorption properties of the tablets were determined to compare the various PVAs.

View Article and Find Full Text PDF

In this study, solid lipid nanoparticle (SLN) suspensions were prepared using a base of hard fat with or without ethylcellulose (EC) and polyvinyl alcohols (PVA) and polysorbate (Tween) 60 surfactants. Commercially available PVAs vary in their degree of saponification and polymerization, and the appropriate PVAs to form SLNs from hard fat with or without EC were investigated. A relatively low-saponification-degree PVA was required to reproducibly form SLN suspensions without EC and relatively high-saponification-degree PVAs were suitable for SLNs with EC.

View Article and Find Full Text PDF

The substituent effect on the thermal denitrogenation mechanism of 7,7-disubstituted 2,3-diazabicyclo[2.2.1]hept-2-enes, concerted versus stepwise, has been investigated in detail.

View Article and Find Full Text PDF

UDFT and CASSCF calculations with the 6-31G(d) basis set were performed to investigate the heavier group 14 element (M) effect on the ground-state spin multiplicity of cyclopentane-1,3-diyls and their reactivity. The calculations find that 2-metallacyclopentane-1,3-diyls (M = Si, Ge) that possess a variety of substituents (X = H, Me, F, OR, SiH(3)) at M(2) are singlet ground-state molecules. The energies of the 1,3-diphenyl-substituted singlet 2-silacyclopentane-1,3-diyls are calculated to be ca.

View Article and Find Full Text PDF

Generation of singlet and triplet 2-silylcyclopentane-1,3-diyls and their reactivity have been investigated in the thermal and photochemical denitrogenation of 2,3-diaza-7-silylbicyclo[2.2.1]hept-2-ene.

View Article and Find Full Text PDF

DFT calculations (UB3LYP/6-31+G**) have been performed to predict the substituent effect on the ground-state spin-multiplicity and the singlet-triplet energy gap in cyclobutane-1,3-diyls, CB-DR. The ground state is calculated to be largely dependent on the substituents (X, Y) at the C2 and C4 positions. The substituent effects can be reasonably explained by the two sets of through-bond (TB) interactions which result from the coupling between the symmetric nonbonding molecular orbital (Psi(S)) and the C-X (Y) sigma and sigma* orbitals.

View Article and Find Full Text PDF