() causes coccidiosis in poultry which persists as economic pain worldwide. Most damage to the intestinal mucosa results from apoptosis of the infected intestinal epithelial cells. The Microneme protein 3 (MIC3) protein is a key virulence factor in some parasites involved in host cell apoptosis inhibition.
View Article and Find Full Text PDFAvian pathogenic Escherichia coli (APEC) O and Salmonella typhimurium (S. Typhimurium) are two leading bacterial pathogens that cause significant economic loss in the poultry industry. O-antigen is an important immunogen of these two bacteria to induce host protective immune responses during infection.
View Article and Find Full Text PDFPathogenic mycobacteria, such as Mycobacterium tuberculosis, Mycobacterium bovis, and Mycobacterium marinum, can trigger NLRP3 inflammasome activation leading to maturation and secretion of interleukin 1β (IL-1β). However, the mycobacterial factors involved in the activation of NLRP3 inflammasome are not fully understood. Here, we identified that the PPE family protein PPE13 was responsible for the induction of IL-1β secretion in a NLRP3 inflammasome-dependent manner.
View Article and Find Full Text PDFListeriolysin O (LLO) is a cholesterol-dependent cytolysin that mediates escape of from phagosomes and enables the bacteria to grow within the host. LLO is a versatile tool allowing to trigger several cellular responses. In this study, rapid phosphorylation of ERK1/2 on Caco-2 cells caused by infection was demonstrated to be highly dependent on LLO activity.
View Article and Find Full Text PDFAminopeptidases that catalyze the removal of N-terminal residues from polypeptides or proteins are crucial for physiological processes. Here, we explore the biological functions of an M29 family aminopeptidase II from (LmAmpII). We show that LmAmpII contains a conserved catalytic motif (EEHYHD) that is essential for its enzymatic activity and LmAmpII has a substrate preference for arginine and leucine.
View Article and Find Full Text PDFThe domain III (EDIII) of the envelope protein of Japanese encephalitis virus (JEV) is proposed to play an essential role in JEV replication and infection; it is involved in binding to host receptors and contains specific epitopes that elicit neutralizing antibodies. However, most previous studies have not provided detailed molecular information about the functional epitopes on JEV EDIII protein. In this study, we described a monoclonal antibody (mAb 2B4) we produced and characterized by IFA, PRNT, ELISA and Western blot analyses.
View Article and Find Full Text PDF