Recently, endoradiotherapy based on actinium-225 (Ac) has attracted increasing attention, which is due to its α particles can generate maximal damage to cancer cells while minimizing unnecessary radiation effects on healthy tissues. Herein, In/Ac-radiolabeled conjugated polymer nanoparticles (CPNs) coated with amphiphilic polymer DSPE-PEG-DOTA have been developed as a new injectable nano-radiopharmaceuticals for cancer endoradiotherapy under the guidance of nuclear imaging. Single photon emission computed tomography/computed tomography (SPECT/CT) using In-DOTA-PEG-CPNs as nano probe indicates a prolonged retention of radiolabeled nanocarriers, which was consistent with the in vivo biodistribution examined by direct radiometry analysis.
View Article and Find Full Text PDFCompared to the current mainstream rigid covalent organic frameworks (COFs) linked by imine bonds, flexible COFs have certain advantages of elasticity and self-adaptability, but their construction and application are greatly limited by the complexity in synthesis and difficulty in obtaining regular structure. Herein, we reported for the first time a series of flexible amine-linked COFs with high crystallinity synthesized by formic acid with unique catalytic and reductive bifunctional properties, rather than acetic acid, the most common catalyst for COF synthesis. The reaction mechanism was demonstrated to be a synchronous in situ reduction during the formation of imine bond.
View Article and Find Full Text PDFOn the basis of high stability of phosphorus-oxygen linkage, we constructed two microporous covalent phosphazene-based frameworks (CPFs), for the first time, by choosing hexachlorocyclotriphosphazene as a core unit and polyhydroxy aromatic compounds (hydroquinone or phloroglucinol) as monomers, named CPF-D and CPF-T, respectively. Characterization studies by using Fourier transform infrared, nuclear magnetic resonance, thermal gravimetric analysis, Co γ-ray irradiation, and so forth, demonstrated that both of the CPF materials have excellent acid and radiation stability and relatively higher thermal stability. The results of batch adsorption experiments show that CPF-T is significantly more capable of sorbing uranium than CPF-D.
View Article and Find Full Text PDFSo far, only five primary elements (C, H, O, N and B) and two types of spatial configuration (C2-C4, C6 and Td) are reported to build the monomers for synthesis of covalent organic frameworks (COFs), which have partially limited the route selection for accessing COFs with new topological structure and novel properties. Here, we reported the design and synthesis of a new "stereoscopic" 2D super-microporous phosphazene-based covalent organic framework (MPCOF) by using hexachorocyclotriphosphazene (a P-containing monomer in a C3-like spatial configuration) and p-phenylenediamine (a linker). The as-synthesized MPCOF shows high crystallinity, relatively high heat and acid stability and distinctive super-microporous structure with narrow pore-size distributions ranging from 1.
View Article and Find Full Text PDFSeparation efficiency of solid-phase extractant is greatly subjected to the spatial configurations of functional ligands attached to the matrix, which has not been studied efficiently till now. In order to further understand the relationship between spatial configurations of the attached functional ligand and the adsorption ability of the extractant, two novel molecules (single-armed ligand, SA and double-armed ligand, DA) with identical coordination unit (amide-thiourea) but different spatial configurations (single/double arms) were designed and synthesized. The corresponding extractants, ND-SA and ND-DA were obtained by modification of nanodiamond (ND) with SA and DA and both the extractants displayed good chemical and thermal stabilities.
View Article and Find Full Text PDFCyanuric chloride was chosen as a core skeleton which reacted with desired linker molecules, urea, thiourea and thiosemicarbazide, to prepare three novel functional covalent triazine-based frameworks, CCU (O-donor set), CCTU (S-donor set) and CCTS (S, N-donor set) respectively, designed for selective adsorption of U(VI). The products have high nitrogen concentration (>30 wt%), regular structure, relatively high chemical and thermal stability. Adsorption behaviors of the products on U(VI) were examined by batch experiments.
View Article and Find Full Text PDFIn numerous reports on selective solid-phase extraction (SPE) of uranium, the extraction of uranium is generally accepted as a direct coordination of the ligands on the solid matrix with the uranyl, in which the critical effect of the hydration shell on the uranyl is neglected. The related mechanism in the extraction process remains unclear. Herein, the detailed calculation of activation energy and the geometry of the identified transition states reveal that the uranium extraction by a newly-synthesized urea-functionalized graphite oxide (Urea-GO) is in essence an exchange process between the ligands on Urea-GO and the coordinated water molecules in the first hydration shell of the uranyl.
View Article and Find Full Text PDFA novel COF-based material (COF-COOH) containing large amounts of carboxylic groups was prepared for the first time by using a simple and effective one-step synthetic method, in which the cheap and commercially available raw materials, trimesoyl chloride and p-phenylenediamine, were used. The as-synthesized COF-COOH was modified with previously synthesized 2-(2,4-dihydroxyphenyl)-benzimidazole (HBI) by "grafting to" method, and a new solid-phase extractant (COF-HBI) with highly efficient sorption performance for uranium(VI) was consequently obtained. A series of characterizations demonstrated that COF-COOH and COF-HBI exhibited great thermostabilities and irradiation stabilities.
View Article and Find Full Text PDFIn this paper, a novel approach for controlling the direction of defect evolution in graphene through intercalation of organic small molecules into graphite oxide (GO) combined with a one-pot microwave-assisted reaction is reported. By using ethanol as intercalator, the bulk production of high quality graphene with its defects being satisfactorily healed is achieved. The repair of defects using extraneous carbon atoms and the hybrid state of these carbon atoms are definitely demonstrated using isotopic tracing studies with (13)C-labeled ethanol combined with (13)C solid-state NMR.
View Article and Find Full Text PDFWe proposed a new approach for preparing an efficient uranium-selective solid phase extractant (HTC-btg) by choosing bayberry tannin as the main building block and especially glyoxal as crosslinking agent via a simple, economic, and green one-pot hydrothermal synthesis. The results of characterization and analysis show that after addition of glyoxal into only bayberry tannin-based hydrothermal reaction system, the as-synthesized HTC-btg displayed higher thermal stability, larger specific surface area and more than doubled surface phenolic hydroxyl groups. The sorption behavior of the sorbents toward uranium under various conditions was investigated in detail and the results indicated that the process is fast, endothermic, spontaneous, and pseudo-second-order chemisorption.
View Article and Find Full Text PDFJ Nanosci Nanotechnol
September 2012
A new amidoxime-functionalized carbonaceous sorbent has been successfully prepared using hydrothermal carbon microsphere as solid matrix and diaminomaleonitrile as precursor of amidoxime ligand. Effects of pH, sorbent dosage, contact time, temperature, initial U(VI) concentration and ionic strength on U(VI) sorption were investigated in detail through batch experiments. Sorption of U(VI) on the sorbent was pH-dependent.
View Article and Find Full Text PDFA new solid-phase extraction adsorbent was prepared by employing a two-step "grafting from" approach to anchor a multidentate N-donor ligand, 5-azacytosine onto hydrothermal carbon (HTC) microspheres for highly selective separation of U(VI) from multi-ion system. Fourier-transform infrared and X-ray photoelectron spectroscopies were used to analyze the chemical structure and properties of resultant HTC-based materials. The adsorption behavior of U(VI) onto the adsorbent was investigated as functions of pH, contact time, ionic strength, temperature, and initial U(VI) concentration using batch adsorption experiments.
View Article and Find Full Text PDF