Publications by authors named "Chiyang Li"

Background: Glioblastoma multiforme (GBM) represents the most prevalent form of primary malignant tumor within the central nervous system. The emergence of resistance to radiotherapy and chemotherapy represents a significant impediment to advancements in glioma treatment.

Methods: We established temozolomide (TMZ)-resistant GBM cell lines by chronically exposing U87MG cell lines to TMZ, and dimethyl sulfoxide (DMSO) was used as placebo control.

View Article and Find Full Text PDF

Purpose: Temozolomide resistance remains a major obstacle in the treatment of glioblastoma (GBM). The combination of temozolomide with another agent could offer an improved treatment option if it could overcome chemoresistance and prevent side effects. Here, we determined the critical drug that cause ferroptosis in GBM cells and elucidated the possible mechanism by which drug combination overcomes chemoresistance.

View Article and Find Full Text PDF

For treatment of glioblastoma (GBM), temozolomide (TMZ) and radiotherapy (RT) exert antitumor effects by inducing DNA double-strand breaks (DSBs), mainly via futile DNA mismatch repair (MMR) and inducing apoptosis. Here, we provide evidence that RBBP4 modulates glioblastoma resistance to chemotherapy and radiotherapy by recruiting transcription factors and epigenetic regulators that bind to their promoters to regulate the expression of the Mre11-Rad50-NBS1(MRN) complex and the level of DNA-DSB repair, which are closely associated with recovery from TMZ- and radiotherapy-induced DNA damage in U87MG and LN229 glioblastoma cells, which have negative MGMT expression. Disruption of RBBP4 induced GBM cell DNA damage and apoptosis in response to TMZ and radiotherapy and enhanced radiotherapy and chemotherapy sensitivity by the independent pathway of MGMT.

View Article and Find Full Text PDF

Introduction: Necroptosis-related genes are essential for the advancement of IDH-wild-type GBM. However, the putative effects of necroptosis-related lncRNAs (nrlncRNAs) in IDH-wild-type GBM remain unknown.

Methods: By using the TCGA and GTEx databases, a nrlncRNA prognostic signature was created using LASSO Cox regression.

View Article and Find Full Text PDF

Switch/sucrose-nonfermenting (SWI/SNF) complexes play a key role in chromatin remodeling. Recent studies have found that SMARCC2, as the core subunit of the fundamental module of the complex, plays a key role in its early assembly. In this study, we found a unique function of SMARCC2 in inhibiting the progression of glioblastoma by targeting the DKK1 signaling axis.

View Article and Find Full Text PDF

Glioma is the most common type of central nervous system tumor. SWItch/sucrose non‑fermentable (SWI/SNF) is a tumor suppressor that serves an important role in epithelial‑mesenchymal transition (EMT). The present study aimed to identify key molecules involved in the EMT process.

View Article and Find Full Text PDF